Using GXWeb for theorem proving and mathematical modelling

Saltire Software

History

Symbolic geometry, available on Mac or PC. Commercial (non-free) product.

Free browser based version of Geometry Expressions

Context

Incircle radius - geometry theorem proving

Box solar cooker mathematical modelling

We demonstrate the software in the following three contexts

Circle caustics - loci and envelopes

Incircle radius - theorem
proving

Geometry

加 解

First length just rescales the model, so no visible change.

加领••••••

Next length makes a difference

与 A!

> - $\Delta \Delta$
> $\therefore \circ \Delta$
> $x_{\circ} \Delta \Delta$
> 0 D
> \rightarrow ค

To create the incircle, we select the three sides, than use the circle construction

8．
与 ふだ・ロー・

与

a	8
b	9
c	\square

radius (C0) 2.533
Constraints may be given symbolically.
Symbols are given numerical values derived from the drawing.
与

a	\square	8
b	\square	2
0	6	
c	\square	10
$\operatorname{radius}(C 0)$		2

We note that for the Pythagorean triple $6,8,10$ the incircle radius is an integer.
与 जि:

a	8
b	$\square 15$
c	\square

A second Pythagorean triple also yields an integer radius.

与 内人゙ッロ・•

Select the vertices then apply the circle construction
\square
radius $(C 0)$

$$
\frac{\sqrt{a+b-c} \cdot \sqrt{a-b+c} \cdot \sqrt{-a+b+c}}{2 \cdot \sqrt{a+b+c}}
$$

radius（C0）

与 内ノ゙・ロー

\square

$$
\operatorname{radius}(C 0) \cdot \operatorname{radius}(C 1) \quad \frac{a \cdot b \cdot c}{2 \cdot(a+b+c)}
$$

Which suggests that the product of the radii simplifies．

$$
\operatorname{radius}(C 1) \quad \frac{a \cdot b \cdot c}{\sqrt{a+b+c} \cdot \sqrt{a+b-c} \cdot \sqrt{a-b+c} \cdot \sqrt{-a+b+c}}
$$

$$
\operatorname{radius}(C 0) \quad \frac{\sqrt{a+b-c} \cdot \sqrt{a-b+c} \cdot \sqrt{-a+b+c}}{2 \cdot \sqrt{a+b+c}}
$$

Take-away questions

Is the incircle radius of a Pythagorean triangle always an integer?

How about the excircles?

Can we discover any formulas connecting the incircle and excircle radii?

Box solar cooker mathematical modelling

Algebra 1

Sketch the box top and lid, putting the hinge at the origin, and the box top along the x axis.

We'll make the box length 1.

$$
\begin{array}{ll}
\text { angle }(A, D, C) & 180+x-2 \cdot y \\
\text { angle }(A, C, D) & -x+y
\end{array}
$$

Whose solution is $y=60+2 x / 3$

Angle at apex of largest paper cone

Take-away question

We found numerical values for the most sunlight captured, and the angle at which it is attained.

Can you derive exact values?

Circle caustics - mathematical modelling

 trig / precalculus

Point light source

Draw a circle centered at the origin

Step-by-Step Solutions with Pro

Get a step ahead with your homework

```
Go Pro Now
```

4\cdot $X^{\wedge}\{4\}+Y-3 \backslash$ cdot $Y^{\wedge}\{2\}+4 \backslash$ cdot $Y^{\wedge}\{4\}+X^{\wedge}\{2\} \backslash c d o t ~ V e f t\left(-3+8 \backslash\right.$ cdot $Y^{\wedge}\{2\}$ right $)$ at $X=0$

㩊 NATURAL LANGUAGE	$\int_{2^{\circ}}^{\pi}$ MATH INPUT	曲 EXTENDED KEYBOARD	: $:$ EXAMPLES	- UPLOAD	\cdots random

Input interpretation
$4 X^{4}+Y-3 Y^{2}+4 Y^{4}+X^{2}\left(-3+8 Y^{2}\right)$ where $X=0$

Result
$(1-2 Y)^{2} Y(Y+1)$
Plots

WolframAlpha lets you paste in tex from
GXWeb, then append the English phrase "at $\mathrm{X}=0$ ", and hands you the factored polynomial.

Take-away questions

Wat is the parametric location of the off-axis cusps?

Does the point with this parameter value in fact lie on the circle whose diameter is the on-axis cusps?

free browser-based mathematical modeling
geometryexpressions.com

