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Solving ruler and compass construction problems

▶ One of the most studied problems in mathematical education

▶ Task: to describe a construction of geometrical figure which satisfies given set of
constraints
“ construct △ABC given α, β and |AB|”

▶ Constructions are procedures

▶ Some instances are unsolvable (e.g. angle trisection)



Phases in solving construction problems



ArgoTriCS

▶ ArgoTriCS – system for automated solving of location construction problems from
the given corpus (authors: V. Marinković, P. Janičić)

▶ Task of location triangle construction problem is to construct △ABC if locations
of three significant points in the triangle are given

▶ Tool was tested on Wernick’s corpus
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▶ Requires background geometrical knowledge



ArgoTriCS

▶ Exports informal textual description of construction, as well as formal description
of construction in GCLC and JSON format

▶ Enables generation of dynamic illustrations

▶ Constructions are proved correct using algebraic and semi-algebraic methods



The goal of research

▶ Existing systems for solving RC-constructions DO NOT provide classical,
human-readable synthetic correctness proofs

▶ In current work we propose first steps towards obtaining readable, but also formal
correctness proofs of automatically generated RC-constructions

▶ Synergy of various tools: triangle construction solver ArgoTriCS,
FOL provers, coherent logic provers and interactive theorem provers



Example 1 – construction phase

▶ Task: Construct △ABC given its vertex A, circumcenter O, and altitude foot Ha
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1. Construct the line l1 = AHa

2. Construct the line l2 : l2 ⊥ l1 and Ha ∈ l2

3. Construct the circle c centered at O
containing A

4. Let B and C be the intersections of the
line l2 and the circle c



Example 1 – proof phase

▶ Task: Prove that A is the vertex of the constructed triangle ABC , that Ha is its
altitude foot and that O is its circumcenter
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1. c contains vertices A, B, and C ,
so it must be the circumcircle of △ABC

2. O is the center of c ,
so it must be the circumcenter of △ABC

3. l2 contains the vertices B and C ,
so it must be equal to side a of △ABC

4. l1 contains A and is perpendicular to
l2 = a, so it must be equal to altitude ha

5. Ha belongs both to l2 = a and l1 = ha,
so it must be the altitude foot



Conclusions following from Example 1

▶ The previous correctness proof follows quite directly from the analysis:
it just reverses the chain of deduction steps

▶ The proof relies on several uniqueness lemmas

▶ One could conclude that it is always easy like this, however...

▶ ... in some cases the proof is quite different from the analysis



Example 2 – construction phase

▶ Task: Construct △ABC given its vertex A, circumcenter O and centroid G
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1. Construct the point P1 :
−→
AG :

−−→
AP1 = 2 : 3

2. Construct the point P2 :
−→
OG :

−−→
OP2 = 1 : 3

3. Construct the line l1 = AP2

4. Construct the line l2 : l2 ⊥ l1 and P1 ∈ l2

5. Construct the circle c centered at O
containing A

6. Let B and C be the intersections of the line l2
and the circle c



Example 2 – proof phase

▶ Task: Prove that A is the vertex of the constructed triangle ABC , that G is its
centroid and that O is its circumcenter
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1. ... similarly to earlier we get that O is the
circumcenter of △ABC , l2 = a and l1 = ha

2.
−→
OG :

−−→
OP2 = 1 : 3 ⇒

−→
OG :

−−→
GP2 = 1 : 2

3.
−−→
P1G :

−−→
P1A = 1 : 3 ⇒

−−→
P1G :

−→
GA = 1 : 2

4. Triangles OGP1 and P2GA are similar

5. Angles ∠OP1G and ∠GAP2 are equal

6. Lines OP1 = l3 and AP2 = ha are parallel

7. ha ⊥ a ⇒ l3 ⊥ a

8. l3 is perpendicular bisector of BC

9. P1 = Ma

10.
−→
AG :

−−→
AMa = 2 : 3 ⇒ G is centroid of △ABC



Automated generation of readable correctness proofs

▶ How can correctness proofs like the ones we have seen be automatically obtained?

▶ We need to formulate the problem statement and the set of lemmas, given as
axioms and to pass them to some automated theorem prover



Problem statement

▶ ArgoTriCS can automatically generate the theorem (in a form suitable for ATPs)
stating that the generated construction is correct

inc(A, l1) ∧ inc(H ′
a, l1) ∧

perp(l2, l1) ∧ inc(H ′
a, l2) ∧

circle(O ′,A, c) ∧
inc(B, l2) ∧ inc(C , l2) ∧ inc c(B, c) ∧ inc c(C , c) ∧ B ̸= C =⇒
H ′
a = Ha ∧ O ′ = O

▶ H ′
a and O ′ are the points given, while Ha and O are the real altitude foot and

circumcenter of constructed triangle ABC

▶ Various non-degeneracy conditions are added to the problem statement
(e.g., H ′

a ̸= A, A ̸= B, A ̸= C , etc.) before it is given to ATPs



The axiom set for proof phase

▶ Definitions and lemmas identified by ArgoTriCS

inc(A, ha) ∧ perp(ha, bc)
−→
AG :

−−→
AMa = 2 : 3

▶ Uniqueness lemmas

(∀l)(inc(A, l) ∧ perp(l , bc) =⇒ l = ha)

(∀c)(inc c(A, c) ∧ inc c(B, c) ∧ inc c(C , c) =⇒ c = c◦)

▶ Properties of basic geometry predicates

(∀l1, l2)(perp(l1, l2) =⇒ perp(l2, l1))

(∀P1,P2)(∃l)(inc(P1, l) ∧ inc(P2, l))

(∀l1, l2, a) (perp(l1, a) ∧ para(l1, l2) =⇒ perp(l2, a))



Using automated theorem provers

▶ Problem statement and identified lemmas are formulated in TPTP format

▶ The conjecture is passed to automated theorem prover Vampire and coherent
logic prover Larus

▶ Vampire is much more efficient, but Larus exports both readable proofs and
formal proofs



Example of readable correctness proof
Axioms:

1. bc unique : ∀L (inc(pB, L) ∧ inc(pC , L) ⇒ L = bc )

2. haA : ∀H (perp(H, bc) ∧ inc(pA,H) ⇒ ha = H )

3. pHa def : ∀H1 (inc(H1, ha) ∧ inc(H1, bc) ⇒ H1 = pHa )

4. cc unique : ∀C (inc c(pA,C) ∧ inc c(pB,C) ∧ inc c(pC ,C) ⇒ C = cc )

5. center unique : ∀C ∀C1 ∀C2 (center(C1,C) ∧ center(C2,C) ⇒ C1 = C2 )

Theorem: th A Ha O0 :
inc(pA, ha1) ∧ inc(pHa1, ha1) ∧ perp(ha1, a1) ∧ inc(pHa1, a1) ∧ inc c(pA, cc1) ∧ center(pOc1, cc1) ∧
inc c(pB, cc1) ∧ inc(pB, a1) ∧ inc c(pC , cc1) ∧ inc(pC , a1) ⇒ pHa = pHa1
Proof:

1. pHa = pHa (by MP, using axiom eqnativeEqSub0; instantiation: A 7→ pHa, B 7→ pHa, X 7→ pHa)
2. a1 = bc (by MP, from inc(pB, a1), inc(pC , a1) using axiom bc unique; instantiation: L 7→ a1)
3. perp(ha1, bc) (by MP, from perp(ha1, a1), a1 = bc using axiom perpEqSub1; instantiation: A 7→ ha1, B 7→ a1, X 7→ bc)
4. ha = ha1 (by MP, from perp(ha1, bc), inc(pA, ha1) using axiom haA; instantiation: H 7→ ha1)
5. inc(pHa1, ha) (by MP, from inc(pHa1, ha1), ha = ha1 using axiom incEqSub1; instantiation: A 7→ pHa1, B 7→ ha1, X 7→ ha)
6. inc(pHa1, bc) (by MP, from inc(pHa1, a1), a1 = bc using axiom incEqSub1; instantiation: A 7→ pHa1, B 7→ a1, X 7→ bc)
7. pHa1 = pHa (by MP, from inc(pHa1, ha), inc(pHa1, bc) using axiom pHa def; instantiation: H1 7→ pHa1)
8. pHa = pHa1 (by MP, from pHa1 = pHa, pHa = pHa using axiom eqnativeEqSub0; instantiation: A 7→ pHa, B 7→ pHa1, X 7→ pHa)
9. Proved by assumption! (by QEDas)



Results
▶ The subset of problems from Wernick’s corpus is considered: 35 non-isomorphic

solvable location triangle problems over
▶ vertices A,B,C
▶ side midpoints Ma,Mb,Mc

▶ feet of altitudes Ha,Hb,Hc

▶ centroid G , circumcenter O and orthocenter H
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▶ Vampire succesfully proved 31 problem

▶ Larus successfully proved 20 problems within the given time-limit of 300 seconds



Conclusions

▶ Work-in-progress

▶ First step toward automated readable, synthetic, formally verified correctness
proofs

▶ Important for educational purposes

▶ Lemmas identified during development of ArgoTriCS were needed, but they were
not sufficient

▶ Coherent logic provers are still not as efficient as automated theorem provers



Future work

▶ Proofs currently rely on high-level lemmas

▶ Correctness of used lemmas should be proved: we are currently developing formal
Isabelle/HOL proofs for all lemmas from the basic geometric axioms

▶ We plan to consider degenerate cases and existence of constructed objects

▶ We plan to exploit concept of hints avaliable in Larus, to help it prove some more
conjectures
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