Towards automated readable proofs of ruler and compass constructions

Vesna Marinković, Tijana Šukilović, Filip Marić

Faculty of Mathematics, University of Belgrade, Serbia

ADG 21. 9. 2024.

Solving ruler and compass construction problems

- One of the most studied problems in mathematical education
- Task: to describe a construction of geometrical figure which satisfies given set of constraints
" construct $\triangle A B C$ given α, β and $|A B|$ "
- Constructions are procedures
- Some instances are unsolvable (e.g. angle trisection)

Phases in solving construction problems

ArgoTriCS

－ArgoTriCS－system for automated solving of location construction problems from the given corpus（authors：V．Marinković，P．Janičić）
－Task of location triangle construction problem is to construct $\triangle A B C$ if locations of three significant points in the triangle are given
－Tool was tested on Wernick＇s corpus

－Requires background geometrical knowledge

ArgoTriCS

1. Using the point A and the point H_{a}, construct a line h_{a} (rule W02);
\% DET: points A and H_{a} are not the same
2. Using the point A and the point O, construct a circle $k(O, C)$ (rule W06);
\% NDG: points A and O are not the same
3. Using the point H_{a} and the line h_{a}, construct a line a (rule W10a);

4. Using the circle $k(O, C)$ and the line a, construct a point C and a point B (rule W04);
\% NDG: line a and circle $k(O, C)$ intersect

- Exports informal textual description of construction, as well as formal description of construction in GCLC and JSON format
- Enables generation of dynamic illustrations
- Constructions are proved correct using algebraic and semi-algebraic methods

The goal of research

- Existing systems for solving RC-constructions DO NOT provide classical, human-readable synthetic correctness proofs
- In current work we propose first steps towards obtaining readable, but also formal correctness proofs of automatically generated RC-constructions
- Synergy of various tools: triangle construction solver ArgoTriCS, FOL provers, coherent logic provers and interactive theorem provers

Example 1 - construction phase

- Task: Construct $\triangle A B C$ given its vertex A, circumcenter O, and altitude foot H_{a}

1. Construct the line $I_{1}=A H_{a}$
2. Construct the line $I_{2}: I_{2} \perp I_{1}$ and $H_{a} \in I_{2}$
3. Construct the circle c centered at O containing A
4. Let B and C be the intersections of the line I_{2} and the circle c

Example 1 - proof phase

- Task: Prove that A is the vertex of the constructed triangle $A B C$, that H_{a} is its altitude foot and that O is its circumcenter

1. c contains vertices A, B, and C, so it must be the circumcircle of $\triangle A B C$
2. O is the center of c, so it must be the circumcenter of $\triangle A B C$
3. I_{2} contains the vertices B and C, so it must be equal to side a of $\triangle A B C$
4. I_{1} contains A and is perpendicular to $I_{2}=a$, so it must be equal to altitude h_{a}
5. H_{a} belongs both to $I_{2}=a$ and $I_{1}=h_{a}$, so it must be the altitude foot

Conclusions following from Example 1

- The previous correctness proof follows quite directly from the analysis: it just reverses the chain of deduction steps
- The proof relies on several uniqueness lemmas
- One could conclude that it is always easy like this, however...
- ... in some cases the proof is quite different from the analysis

Example 2 - construction phase

- Task: Construct $\triangle A B C$ given its vertex A, circumcenter O and centroid G

1. Construct the point $P_{1}: \overrightarrow{A G}: \overrightarrow{A P_{1}}=2: 3$
2. Construct the point $P_{2}: \overrightarrow{O G}: \overrightarrow{O P_{2}}=1: 3$
3. Construct the line $I_{1}=A P_{2}$
4. Construct the line $I_{2}: I_{2} \perp I_{1}$ and $P_{1} \in I_{2}$
5. Construct the circle c centered at O containing A
6. Let B and C be the intersections of the line I_{2} and the circle C

Example 2 - proof phase

- Task: Prove that A is the vertex of the constructed triangle $A B C$, that G is its centroid and that O is its circumcenter

1. ... similarly to earlier we get that O is the
 circumcenter of $\triangle A B C, I_{2}=a$ and $I_{1}=h_{a}$
2. $\overrightarrow{O G}: \overrightarrow{O P_{2}}=1: 3 \Rightarrow \overrightarrow{O G}: \overrightarrow{G P_{2}}=1: 2$
3. $\overrightarrow{P_{1} G}: \overrightarrow{P_{1} A}=1: 3 \Rightarrow \overrightarrow{P_{1} G}: \overrightarrow{G A}=1: 2$
4. Triangles $O G P_{1}$ and $P_{2} G A$ are similar
5. Angles $\angle O P_{1} G$ and $\angle G A P_{2}$ are equal
6. Lines $O P_{1}=I_{3}$ and $A P_{2}=h_{a}$ are parallel
7. $h_{a} \perp a \Rightarrow I_{3} \perp a$
8. I_{3} is perpendicular bisector of $B C$
9. $P_{1}=M_{a}$
10. $\overrightarrow{A G}: \overrightarrow{A M_{a}}=2: 3 \Rightarrow G$ is centroid of $\triangle A B C$

Automated generation of readable correctness proofs

- How can correctness proofs like the ones we have seen be automatically obtained?
- We need to formulate the problem statement and the set of lemmas, given as axioms and to pass them to some automated theorem prover

Problem statement

- ArgoTriCS can automatically generate the theorem (in a form suitable for ATPs) stating that the generated construction is correct

$$
\begin{aligned}
& \operatorname{inc}\left(A, I_{1}\right) \wedge \operatorname{inc}\left(H_{a}^{\prime}, I_{1}\right) \wedge \\
& \operatorname{perp}\left(I_{2}, I_{1}\right) \wedge \operatorname{inc}\left(H_{a}^{\prime}, I_{2}\right) \wedge \\
& \operatorname{circle}\left(O^{\prime}, A, c\right) \wedge \\
& \operatorname{inc}\left(B, I_{2}\right) \wedge \operatorname{inc}\left(C, I_{2}\right) \wedge \operatorname{inc} _c(B, c) \wedge \operatorname{inc} _(C, c) \wedge B \neq C \Longrightarrow \\
& H_{a}^{\prime}=H_{a} \wedge O^{\prime}=O
\end{aligned}
$$

- H_{a}^{\prime} and O^{\prime} are the points given, while H_{a} and O are the real altitude foot and circumcenter of constructed triangle $A B C$
- Various non-degeneracy conditions are added to the problem statement (e.g., $H_{a}^{\prime} \neq A, A \neq B, A \neq C$, etc.) before it is given to ATPs

The axiom set for proof phase

- Definitions and lemmas identified by ArgoTriCS

$$
\begin{aligned}
& \operatorname{inc}\left(A, h_{a}\right) \wedge \operatorname{perp}\left(h_{a}, b c\right) \\
& \overrightarrow{A G}: \overrightarrow{A M_{a}}=2: 3
\end{aligned}
$$

- Uniqueness lemmas

$$
\begin{aligned}
(\forall I)(\operatorname{inc}(A, I) \wedge \operatorname{perp}(I, b c) & \left.\Longrightarrow I=h_{a}\right) \\
(\forall c)\left(\operatorname{inc} c(A, c) \wedge \operatorname{inc} c(B, c) \wedge \operatorname{inc}_{-c}(C, c)\right. & \left.\Longrightarrow c=c^{\circ}\right)
\end{aligned}
$$

- Properties of basic geometry predicates

$$
\begin{aligned}
\left(\forall I_{1}, I_{2}\right)\left(\operatorname{perp}\left(I_{1}, I_{2}\right)\right. & \left.\Longrightarrow \operatorname{perp}\left(I_{2}, I_{1}\right)\right) \\
\left(\forall P_{1}, P_{2}\right)(\exists I)\left(\operatorname{inc}\left(P_{1}, I\right)\right. & \left.\wedge \operatorname{inc}\left(P_{2}, I\right)\right) \\
(\forall / 1, I 2, a)\left(\operatorname{perp}\left(I_{1}, a\right) \wedge \operatorname{para}\left(I_{1}, I_{2}\right)\right. & \left.\Longrightarrow \operatorname{perp}\left(I_{2}, a\right)\right)
\end{aligned}
$$

Using automated theorem provers

- Problem statement and identified lemmas are formulated in TPTP format
- The conjecture is passed to automated theorem prover Vampire and coherent logic prover Larus
- Vampire is much more efficient, but Larus exports both readable proofs and formal proofs

Example of readable correctness proof

Axioms:

1. bc_unique: $\forall L(i n c(p B, L) \wedge \operatorname{inc}(p C, L) \Rightarrow L=b c)$
2. haA : $\forall H(\operatorname{perp}(H, b c) \wedge \operatorname{inc}(p A, H) \Rightarrow h a=H)$
3. pHa _def: $\forall H 1(i n c(H 1, h a) \wedge \operatorname{inc}(H 1, b c) \Rightarrow H 1=p H a)$
4. cc_unique : $\forall C\left(i n c _c(p A, C) \wedge i n c_{-} c(p B, C) \wedge i n c_{_} c(p C, C) \Rightarrow C=c c\right)$
5. center_unique : $\forall C \forall C 1 \forall C 2(\operatorname{center}(C 1, C) \wedge \operatorname{center}(C 2, C) \Rightarrow C 1=C 2)$

Theorem: th_A_Ha_O0 :
$\operatorname{inc}(p A, h a 1) \wedge \operatorname{inc}(p H a 1, h a 1) \wedge \operatorname{perp}(h a 1, a 1) \wedge \operatorname{inc}(p H a 1, a 1) \wedge \operatorname{inc} _c(p A, c c 1) \wedge \operatorname{center}(p O c 1, c c 1) \wedge$ inc_c $(p B, c c 1) \wedge \operatorname{inc}(p B, a 1) \wedge \operatorname{inc} _c(p C, c c 1) \wedge \operatorname{inc}(p C, a 1) \Rightarrow p H a=p H a 1$
Proof:

1. $p H a=p H a$ (by MP, using axiom eqnativeEqSub0; instantiation: $A \mapsto p H a, B \mapsto p H a, X \mapsto p H a$)
2. $a 1=b c$ (by MP, from inc $(p B, a 1)$, $\operatorname{inc}(p C, a 1)$ using axiom bc_unique; instantiation: $L \mapsto a 1$)
3. $\operatorname{perp}(h a 1, b c)$ (by MP, from $\operatorname{perp}(h a 1, a 1), a 1=b c$ using axiom perpEqSub1; instantiation: $A \mapsto h a 1, B \mapsto a 1, X \mapsto b c$)
4. $h a=h a 1$ (by $M P$, from $\operatorname{perp}(h a 1, b c), \operatorname{inc}(p A, h a 1)$ using axiom haA; instantiation: $H \mapsto$ hal $)$
5. inc($p H a 1, h a$) (by MP, from inc($p H a 1, h a 1$), ha $=$ hal using axiom incEqSub1; instantiation: $A \mapsto p H a 1, B \mapsto h a 1, X \mapsto h a$)
6. inc $(p H a 1, b c$) (by MP, from inc($p H a 1, a 1$), a1 = bc using axiom incEqSub1; instantiation: $A \mapsto p H a 1, B \mapsto a 1, X \mapsto b c$)
7. $p H a 1=p H a($ by MP, from inc($p H a 1, h a$), inc $(p H a 1, b c)$ using axiom pHa_def; instantiation: $H 1 \mapsto p H a 1$)
8. $p H a=p H a 1$ (by MP, from $p H a 1=p H a, p H a=p H a u s i n g$ axiom eqnativeEqSub0; instantiation: $A \mapsto p H a, B \mapsto p H a 1, X \mapsto p H a)$
9. Proved by assumption! (by QEDas)

Results

- The subset of problems from Wernick's corpus is considered: 35 non-isomorphic solvable location triangle problems over
- vertices A, B, C
- side midpoints M_{a}, M_{b}, M_{c}
- feet of altitudes H_{a}, H_{b}, H_{c}
- centroid G, circumcenter O and orthocenter H

- Vampire succesfully proved 31 problem
- Larus successfully proved 20 problems within the given time-limit of 300 seconds

Conclusions

- Work-in-progress
- First step toward automated readable, synthetic, formally verified correctness proofs
- Important for educational purposes
- Lemmas identified during development of ArgoTriCS were needed, but they were not sufficient
- Coherent logic provers are still not as efficient as automated theorem provers

Future work

- Proofs currently rely on high-level lemmas
- Correctness of used lemmas should be proved: we are currently developing formal Isabelle/HOL proofs for all lemmas from the basic geometric axioms
- We plan to consider degenerate cases and existence of constructed objects
- We plan to exploit concept of hints avaliable in Larus, to help it prove some more conjectures

