OK Geometry -

 observing dynamic constructions
Zlatan Magajna

Faculty of Education
University of Ljubljana

You can downolad OK Geometry at

 www.ok-geometry.comPlease download the version 19.4.4.
Hereby shown material (and more) is in
ADG 2023 section
Unzip and launch OKGeometry_19_4.exe

OK Geometry - A tool for observing dynamic constructions

gure Commands

OKG - A tool for observing dynamic

 Treatment Advanced
constructions

3 working modes

- Easy (lower secondary level)
- Basic (upper secondary level)
Plus
Easy and Basic level available in
- English
- German
- Italian
- Czech
- Slövenian

OKG - A tool for observing dynamic constructions

Simple observation of dynamic constructions

- Observe properties of a dynamic construction
- 'Restricted' observation
- Observing algebraic relations

Observing imported constructions

- ABC - a triangle
- D - base of Aaltitude
- E - base of Baltitude
- F - midpoint of DE
- G - midpoint of $A B$

Observe the properties of this configuration.

Observing imported constructions

- ABC - a triangle
- D - base of Aaltitude
- E - base of Baltitude
- F - midpoint of DE
- G - midpoint of $A B$

Observe the properties of this configuration.

Importing constructions from DGS

Observing imported constructions

Observing imported constructions

Observing imported constructions

Understanding properties

- OKG considers the displayed objects and objects passing through labelled points.
- Advice: label 3-12 relevant points.
- OKG considers only angles between lines (angle \equiv supplementary angle).
- OKG ignores trivial congruences of angles between lines.

Understanding properties

- OKG considers the displayed objects and objects passing through labelled points.
- Advice: label 3-12 relevant points.
- OKG considers only angles between lines (angle \equiv supplementary angle).
- OKG ignores trivial congruences of angles between lines.

Models of geometry

Static model
Free point $A(3,5)$

Dynamic model
Free point

$$
A(3,5)->A(x, y)
$$

Randomisation of constructions

GeoGebra

Instance of construction

Advanced observation

- How to
construct the triangle ABC from known positions of points C, F, G.

Advanced observation

Observing algebraic relations

$P=\operatorname{Area}(A, B, C)$
$a=$ Distance (B, C)
b = Distance(C,A)
c = Distance (A, B)
m = Distance(D,E)
$\mathrm{n}=$ Distance(F,G)
Note. Use explicit measurements.

Observing algebraic relations

Observing algebraic relations

- Consider several instances of a construction to obtain several instances of parameters (x_{1}, x_{2}, ... x_{k}).
- Solve the a system of linear equations

- Technical problems...

The principle of simple observation

A construction

Random realisations
(rand_fig1, rand_fig2, rand_fig3,....)

Common simple numer. properties (eg. $A B=A C$)

Textual elaboration for properties
(eg. ABC is isosceles)

A 'difficult' object

- ABC - an acute triangle
- $k=k(\mathrm{D}, \mathrm{B})-$ circle with diameter BC
- k^{\prime} - a circle inscribed in the 'triangle' bound by AB, k and CB.
- Analyse the circle k^{\prime}.

An 'implicit' object

- ABC - a triangle
- P - a point

- $A A^{\prime}, B B^{\prime}, C C^{\prime}$ - Cevian lines of P in $A B C$.
- $A A^{\prime} \equiv B B^{\prime} \equiv C^{\prime}$

Investigate!

An optimisation problem

$A B C$ - reference triangle
P - point on plane that minimises $|A P|+|B P|+|C P|$.

Analyse the position of such a point P.

A nice problem

How to inscribe 3 congruent squares into a given triangle $A B C$ as shown in the figure?

How to observe?

OKG Sketch Editor

- Configuration vs. construction
- OKG observation requires (several) 'exact’ configurations.
- Sketch Editor creates
- Constructions
- Difficult objects
- Implicit constructions (configurations)
- Configurations by optimisation

OKG Sketch Editor

OKG Sketch Editor - common buttons

Shape objects
Hide objects
Delete objects
(Scenes,...)
(Generic view)
Label points
Point, Intersection, Midpoint
Line, Line 2 obj
Circle, Circle 3 obj, ...
Segment, Perp.seg., Polyline
Angle, Various decorations
Text

Safe	Safe objects	
Alt	Alternative objects	
B	Anchor	
-	(Mark Unknown)	
*	Drag point	
[]	Zoom view ...	F8 - Help
+	Move view	
4	Undo	
-	Redo	
\otimes	Redefine	
\bigcirc	(Declare cyclic)	
Δ ?	(Triangle analysis)	

OKG Sketch Editor special commands

	Safe ON	When necessary, segments are treated as lines, arcs as circles.
Alt	Alt (try mouse scroll)	Press repeatedly for alternative solutions.
,	Anchor (otrymouse scroll)	Press repeatedly for different ways of representation of objects,
\%	Line 2 objects + Alt (try mouse scroll)	Line defined by 2 objects in terms of 'passing through', 'is parallel', 'is tangent', 'is radical axis'.
(3)	Circle 3 objects + Alt (try mouse scroll)	Circle defined with 3 objects in terms of 'passing through', 'is tangent'.

A 'difficult' circle

- ABC - an acute triangle
- $k=k(\mathrm{D}, \mathrm{B})-$ circle with
 diameter BC
- k^{\prime} - a circle inscribed in the 'triangle' bound by AB, k and CB.
- Analyse the circle k^{\prime}.

A 'difficult' circle

$$
1^{*} r a * a+r a * b+r a * c+1 / 2^{*} a^{\wedge} 2-
$$

$$
1 / 2^{*} b^{\wedge} 2+b^{*} c-1 / 2^{*} c^{\wedge} 2-S=0
$$

$$
1^{*} r a * a+r a * b+r a * c+1 / 2^{*} a^{\wedge} 2-a^{*} r i-
$$

$$
1 / 2^{*} b^{\wedge} 2+b^{*} c-b^{*} r i-1 / 2^{*} c^{\wedge} 2-c^{*} r i=
$$

$$
0
$$

$$
\begin{aligned}
& 1^{*} r a^{*} a^{*}\left(r^{*} \cos (A)\right)+r a^{*} b^{*}\left(r^{*} \cos (A)\right)+ \\
& r a^{*} c^{*}\left(r^{*} \cos (A)\right)+1 / 4^{*} a^{\wedge} 3+ \\
& 1 / 2^{*} a^{\wedge} 2^{*}\left(r^{*} \cos (A)\right)-1 / 4^{*} a^{*} b^{\wedge} 2- \\
& 1 / 4^{*} a^{*} c^{\wedge} 2-1 / 2^{*} b^{\wedge} 2^{*}\left(r^{*} \cos (A)\right)+ \\
& b^{*} c^{*}\left(r^{*} \cos (A)\right)-1 / 2^{*} c^{\wedge} 2^{*}\left(r^{*} \cos (A)\right)= \\
& 0 \\
& (-1 / 2)^{*} r a^{\wedge} 2^{*}\left(r^{*} \cos (A)\right)- \\
& 1 / 4^{*} r a^{\wedge} 2^{*}\left(r^{*} \cos (B)\right)- \\
& 1 / 4^{*} r a^{\wedge} 2^{*}\left(r^{*} \cos (C)\right)+1 / 4^{*} r^{\wedge} 2^{*} r i+ \\
& r a^{*}\left(r^{*} \cos ^{(A)}\right)^{*} r i+1 / 2^{*} r a^{*}\left(r^{*} \cos (B)\right)^{*} r i \\
& +1 / 2^{*} r a^{*}\left(r^{*} \cos (C)\right)^{*} r i-1 / 2^{*} r a^{*} r r^{\wedge} 2- \\
& 1 / 2^{*}\left(r^{*} \cos (A)\right)^{*} r^{\wedge} 2=0
\end{aligned}
$$

An optimisation problem

$A B C$ - reference triangle
P - point on plane that minimises

$$
|A P|+|B P|+|C P| .
$$

Analyse the position of such a point P.

An optimisation problem

A nice problem

How to inscribe 3 congruent squares into a given triangle $A B C$ as shown in the figure?

A nice point

- Y354 = Local coordinates $x=1 / 2, y=$ 1/2; Object(s): A,B
- Y360 = Projection onto line of point; Object(s): AB, C

A nice point

Hypothetise

the size m of squares in terms of common triangle quantites.

An 'implicit' object

Equal_AA_BB_CC = False

- ABC - a triangle
- P - a point
- $A A^{\prime}, B B^{\prime}, C C^{\prime}-C e v i a n$ lines of P in $A B C$.
- ($\left.A A^{\prime} \equiv B B^{\prime} \equiv C C^{\prime}\right)$

Investigate!

An 'implicit' problem

- ABC - a triangle
- P - a point
- $A A^{\prime}, B B^{\prime}, C C^{\prime}-C e v i a n$ lines of P in $A B C$.
- $A A^{\prime} \equiv B B^{\prime} \equiv C^{\prime}$

Investigate!

Triangle geometry

- Observe objects wrt. reference triangle
- Drawing triangle objects
- Glossary of triangle objects
- Observing algebraic relations in a triangle

Triangle observation

ADG 2023, Belgrade
Zlatan Magajna

Triangle centres and transformations

- >50.000 centres
- >30 transformations
- ~500.000 transformed centres
- millions of lines connecting the centres

Triangle objects

~ 230 considered triangles \rightarrow
>2000 lines, >6000 circles

~ 30 considered lines
~100 circles, ~ 40 conics, ~ 1300 cubics

Triangle centres and transformations

Triangle transformations (e.g. isotomic conjugation)

Triangle-Point objects

Triangle objects

Glossary

Glossary

x
Enter approximate entry

Triangle objects

- Given is a triangle $A B C$.
- Draw the Euler line of the extouch triangle of ABC.

Congruent Cevians

Example of a triangle locus

- $A^{\prime}, B^{\prime}, C^{\prime}$ are the mirror images of a point P in the sides of triangle ABC.
- For what points P are the lines $A A^{\prime}, B^{\prime}, C C^{\prime}$ concurrent?

Example of a triangle locus

- $A^{\prime}, B^{\prime}, C^{\prime}$ are the mirror images of a point P in the sides of triangle

Cyclic constructions

- ABC - an acute triangle
- $k a$ - the inwards semicircle on BC
- $k a^{\prime}$ - the smallest of circles touching AB, AC, and (externally) ka
- $k b^{\prime}, k c^{\prime}$ - defined cyclically
- Investigate the points of contact of $k a^{\prime}, k b^{\prime}, k c^{\prime}$ with the sidelines of $A B C$.

Generic constructions

- Generic constructions are constructionally isomorphic families of dynamic constructions.
- Generic constructions appear and behave like ordinary constructions, in which some construction steps consist of rules (i.e. groups of isomorphic operations).

All resulting constructions can be visualised, analysed, checked for properties, etc. at the same time.

Generic constructions -

constructionally isomorphic configurations

1. Quadrilateral \rightarrow

Random,
bicentric, cyclic,
equidiagonal,)

1. $\mathrm{ABCD}-\mathrm{a}$ trapezium
2. $\mathrm{E}-\mathrm{AC} \cap \mathrm{BD}$
3. $\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{l}$ incentres of the 4 triangles (ABE,BCE,CDE,DAE)
4. incentres \rightarrow incentre, centroid, circumcentre, orthocentre, ...

Shaded 4laterals are cyclic in 43 cases out of 485 checked, e.g.:

- incentres for bicentric quadrilaterals,
- 9-point centres for Pytagorean quadrilateral...

Projects

- You can collect constructions, part of constructions, results, etc. into a project.
- A project may contain related constructions, observed properties, a proof
 of a claim, a proving
 task, etc.

Saving properties

Proving tasks

- Observe properties
- Select relevant properties
- Organise the properties
- Provide deductive argumentation

Does a given problem space help?

Proving

Task

1 Task

Given is a circle with centre S and and three points, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on its circumference. Let D be the intersection of the line $A B$ and the bisector of the chord BC .
Prove that S, C, D, and A are cocyclic.

Comment:

2 Proof

Definition Let E be the midpoint of BC .
Claim $1 \angle \mathrm{CSB}=2 \cdot \angle \mathrm{CSD}$
Argument 1 First, note that S lays on the bisector of segment $B C$ (since $|S B|=|S C|)$. Let E be the midpoint of BC . The triangles AEB and SEC are congruent by sss. Thus
$\angle \mathrm{CSE}=\angle \mathrm{ESB}$
and consequently
$\angle \mathrm{CSB}=2 \cdot \angle \mathrm{CSD}$.
Claim $2 \angle \mathrm{CAB}=\angle \mathrm{CSD}$
Argument 2 The arc BC of the circle $\mathrm{k}(\mathrm{S}, \mathrm{A})$ spans an inscribed angle $\angle \mathrm{CAB}$ and the central anole $/$ CSR Rua lnown thenrem,

-umene $x+\square$			
	2 Arriogaual lines		
	1) Cimgrumt mpatenes		
	4 Funt unameritr		
	5 Comarumengments		
	a Comgruint triomglez		
	7 Orthogoent lines		

Importing proofs JGEX \rightarrow OK Geometry

Multiple representations - Mr Geo (Wong, Yin, Yang, Cheng, 2011)

Given: Parallelogram ABCD with diagonal $\overline{\mathrm{AC}}$
Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$

Justification of claims

High-level ideas

Chaining elements

A D H statements

'Three level' proof

Observation and (A)DG tools

Thanks

