The locus story of a rocking camel in a medical center in the city of Freistadt

Eva Erhart

Zoltán Kovács

Anna Käferböck

Engelbert Zeint|

The Private University College of Education of the Diocese of Linz, Austria
ADG 2023, September 20, 2023, Belgrade, Serbia
Third author is supported by the grant PID2020-113192GB-I00 from the Spanish MICINN.

Abstract

We give an example of automated geometry reasoning for an imaginary classroom project by using the free software package GeoGebra Discovery.

The project is motivated by a publicly available toy, a rocking camel, installed at a medical center in Upper Austria. We explain how the process of

- a false conjecture,
- experimenting,
- modeling,
- a precise mathematical setup,
- and then a proof by automated reasoning could help extend mathematical knowledge at secondary school level and above.

Freistadt

Freistadt

Freistadt

Freistadt

Movement of the hump of the camel

Video recordings \rightarrow static images \rightarrow conjecture

Movement of the hump of the camel

Video recordings \rightarrow static images \rightarrow conjecture

Movement of the hump of the camel

Video recordings \rightarrow static images \rightarrow conjecture

Movement of the hump of the camel

Video recordings \rightarrow static images \rightarrow conjecture

Movement of the hump of the camel

Video recordings \rightarrow static images \rightarrow conjecture

Movement of the hump of the camel

Video recordings \rightarrow static images \rightarrow conjecture

Movement of the hump of the camel

Video recordings \rightarrow static images \rightarrow conjecture

Movement of the hump of the camel

Computing the locus equation

Movement of the hump of the camel

Computing the locus equation

Movement of the hump of the camel

Computing the locus equation

$$
\begin{gathered}
625000000 x^{6}-29625000000 x^{5}+1875000000 x^{4} y^{2}-7500000000 x^{4} y+513916750000 x^{4}-59250000000 x^{3} \\
y^{2}+225000000000 x^{3} y-3894242700000 x^{3}+1875000000 x^{2} y^{4}-15000000000 x^{2} y^{3}+701583500000 x^{2} \\
y^{2}-2494326000000 x^{2} y+12634068729100 x^{2}-29625000000 x y^{4}+225000000000 x y^{3}-3894242700000 x y^{2}+ \\
14694390000000 x y-26440635548340 x+625000000 y^{6}-7500000000 y^{5}+187666750000 y^{4}-2494326000000 y^{3}+ \\
23089046979100 y^{2}-75203840809200 y=-80422746144129
\end{gathered}
$$

Movement of the hump of the camel

A proof via elimination (using algebraic geometry, black box)
(1) $A=(0,0), B=(15,0), A E=A H=5.5, E H=12$.

Movement of the hump of the camel

A proof via elimination (using algebraic geometry, black box)
(1) $A=(0,0), B=(15,0), A E=A H=5.5, E H=12$.
(2) $E=(a, b), a^{2}+b^{2}=5.5^{2}$.

Movement of the hump of the camel

A proof via elimination (using algebraic geometry, black box)
(1) $A=(0,0), B=(15,0), A E=A H=5.5, E H=12$.
(2) $E=(a, b), a^{2}+b^{2}=5 \cdot 5^{2}$.
(3) $H=(c, d),(c-15)^{2}+d^{2}=5.5^{2}$.

Movement of the hump of the camel

A proof via elimination (using algebraic geometry, black box)
(1) $A=(0,0), B=(15,0), A E=A H=5.5, E H=12$.
(2) $E=(a, b), a^{2}+b^{2}=5 \cdot 5^{2}$.
(3) $H=(c, d),(c-15)^{2}+d^{2}=5.5^{2}$.
(9) $(a-c)^{2}+(b-d)^{2}=12^{2}$.

Movement of the hump of the camel

A proof via elimination (using algebraic geometry, black box)
(1) $A=(0,0), B=(15,0), A E=A H=5.5, E H=12$.
(2) $E=(a, b), a^{2}+b^{2}=5 \cdot 5^{2}$.
(3) $H=(c, d),(c-15)^{2}+d^{2}=5.5^{2}$.
(9) $(a-c)^{2}+(b-d)^{2}=12^{2}$.
(6) $M=(x, y) \ldots$

Movement of the hump of the camel

A proof via elimination (using algebraic geometry, black box)
(1) $A=(0,0), B=(15,0), A E=A H=5.5, E H=12$.
(2) $E=(a, b), a^{2}+b^{2}=5 \cdot 5^{2}$.
(3) $H=(c, d),(c-15)^{2}+d^{2}=5.5^{2}$.
(9) $(a-c)^{2}+(b-d)^{2}=12^{2}$.
(9) $M=(x, y) \ldots$
(0) $\left\langle a^{2}+b^{2}-5.5^{2},(c-15)^{2}+d^{2}-5.5^{2}\right.$,
$\left.(a-c)^{2}+(b-d)^{2}-12^{2}, \ldots\right\rangle \cap \mathbb{Q}[x, y]=\ldots$

A possible approach as a STEM/STEAM project

(1) Play with the toy, try making a conjecture.

A possible approach as a STEM/STEAM project

(1) Play with the toy, try making a conjecture.
(2) Make an exact measurement of the toy and its parts.

A possible approach as a STEM/STEAM project

(1) Play with the toy, try making a conjecture.
(2) Make an exact measurement of the toy and its parts.
(3) Model the toy in GeoGebra and trace the movement of the hump.

A possible approach as a STEM/STEAM project

(1) Play with the toy, try making a conjecture.
(2) Make an exact measurement of the toy and its parts.
(3) Model the toy in GeoGebra and trace the movement of the hump.
(4) Make a second conjecture. (It's an ellipse....?)

A possible approach as a STEM/STEAM project

(1) Play with the toy, try making a conjecture.
(2) Make an exact measurement of the toy and its parts.
(3) Model the toy in GeoGebra and trace the movement of the hump.
(4) Make a second conjecture. (It's an ellipse...?)
(5) Show the locus of the trace points. (No, it's not an ellipse!)

A possible approach as a STEM/STEAM project

(1) Play with the toy, try making a conjecture.
(2) Make an exact measurement of the toy and its parts.
(3) Model the toy in GeoGebra and trace the movement of the hump.
(4) Make a second conjecture. (It's an ellipse...?)
(5) Show the locus of the trace points. (No, it's not an ellipse!)
(0) Make a new conjecture. (It looks like an 8-form, but is there an equation to describe it?)

A possible approach as a STEM/STEAM project

(1) Play with the toy, try making a conjecture.
(2) Make an exact measurement of the toy and its parts.
(3) Model the toy in GeoGebra and trace the movement of the hump.
(4) Make a second conjecture. (It's an ellipse...?)
(5) Show the locus of the trace points. (No, it's not an ellipse!)
(6) Make a new conjecture. (It looks like an 8-form, but is there an equation to describe it?)
(1) Compute the mathematical equation of the locus. (Both with LocusEquation and elimination via CAS. Order can be a didactical decision.)

A possible approach as a STEM/STEAM project

(1) Play with the toy, try making a conjecture.
(2) Make an exact measurement of the toy and its parts.
(3) Model the toy in GeoGebra and trace the movement of the hump.
(4) Make a second conjecture. (It's an ellipse...?)
(5) Show the locus of the trace points. (No, it's not an ellipse!)
(6) Make a new conjecture. (It looks like an 8-form, but is there an equation to describe it?)
(1) Compute the mathematical equation of the locus. (Both with LocusEquation and elimination via CAS. Order can be a didactical decision.)
(8) Check the mathematical equation (provided by the CAS) graphically.

A possible approach as a STEM/STEAM project

(1) Play with the toy, try making a conjecture.
(2) Make an exact measurement of the toy and its parts.
(3) Model the toy in GeoGebra and trace the movement of the hump.
(4) Make a second conjecture. (It's an ellipse...?)
(5) Show the locus of the trace points. (No, it's not an ellipse!)
(6) Make a new conjecture. (It looks like an 8-form, but is there an equation to describe it?)
(1) Compute the mathematical equation of the locus. (Both with LocusEquation and elimination via CAS. Order can be a didactical decision.)
(8) Check the mathematical equation (provided by the CAS) graphically.
(9) Try to generalize the problem with different inputs. (Difficult!)

Further uses of the approach

Example: Thales' Circle Theorem

(1) Consider the unit circle and let $A=(-1,0), B=(1,0)$.

Further uses of the approach

Example: Thales' Circle Theorem

(1) Consider the unit circle and let $A=(-1,0), B=(1,0)$.
(2) $C=(x, y), x^{2}+y^{2}=1$.

Further uses of the approach

Example: Thales' Circle Theorem

(1) Consider the unit circle and let $A=(-1,0), B=(1,0)$.
(2) $C=(x, y), x^{2}+y^{2}=1$.
(3) Checking if $A C \perp B C$ means exactly that $(x-(-1)) \cdot(x-1)+(y-0) \cdot(y-0)=0$, and this is equivalent with our assumption on the sum of squares.

Further uses of the approach

Example: Thales' Circle Theorem

(1) Consider the unit circle and let $A=(-1,0), B=(1,0)$.
(2) $C=(x, y), x^{2}+y^{2}=1$.
(3) Checking if $A C \perp B C$ means exactly that $(x-(-1)) \cdot(x-1)+(y-0) \cdot(y-0)=0$, and this is equivalent with our assumption on the sum of squares.
(4) It is possible to formulate the converse of the statement: What is the geometric locus of points (x, y) such that $A C \perp B C$, when A and B are fixed?

Further uses of the approach

Example: Thales' Circle Theorem

(1) Consider the unit circle and let $A=(-1,0), B=(1,0)$.
(2) $C=(x, y), x^{2}+y^{2}=1$.
(3) Checking if $A C \perp B C$ means exactly that $(x-(-1)) \cdot(x-1)+(y-0) \cdot(y-0)=0$, and this is equivalent with our assumption on the sum of squares.
(9) It is possible to formulate the converse of the statement: What is the geometric locus of points (x, y) such that $A C \perp B C$, when A and B are fixed? Here we get a quadratic result - in general, this can be much more complicated.

Further uses of the approach

Example: Thales' Circle Theorem

(1) Consider the unit circle and let $A=(-1,0), B=(1,0)$.
(2) $C=(x, y), x^{2}+y^{2}=1$.
(3) Checking if $A C \perp B C$ means exactly that $(x-(-1)) \cdot(x-1)+(y-0) \cdot(y-0)=0$, and this is equivalent with our assumption on the sum of squares.
(9) It is possible to formulate the converse of the statement: What is the geometric locus of points (x, y) such that $A C \perp B C$, when A and B are fixed? Here we get a quadratic result - in general, this can be much more complicated. (Collinearity: degree 1

Further uses of the approach

Example: Thales' Circle Theorem

(1) Consider the unit circle and let $A=(-1,0), B=(1,0)$.
(2) $C=(x, y), x^{2}+y^{2}=1$.
(3) Checking if $A C \perp B C$ means exactly that $(x-(-1)) \cdot(x-1)+(y-0) \cdot(y-0)=0$, and this is equivalent with our assumption on the sum of squares.
(9) It is possible to formulate the converse of the statement: What is the geometric locus of points (x, y) such that $A C \perp B C$, when A and B are fixed? Here we get a quadratic result - in general, this can be much more complicated. (Collinearity: degree 1 - but: conchoids, cissoids, strophoids (of degree 3) or cardioids, deltoids or lemniscates (of degree 4) were mostly quite well-known by the ancient Greek mathematicians!)

Bibliography

- Kovács, Z., Recio, T., Vélez, M.P.: GeoGebra Discovery in Context. In: Janičić, P., Kovács, Z. (eds.) ADG 2021, EPTCS, vol. 352, pp. 141-147 (2021).
- Kovács, Z., Recio, T., Vélez, M.P.: Automated reasoning tools in GeoGebra Discovery. ACM Communications in Computer Algebra 55(2), 39-43 (2021).
- Penprase, B.E.: STEM Education for the 21st Century. Springer (2020).
- Oldenburg, R. FeliX - mit Algebra Geometrie machen. Informatik Spektrum 32, 23-26 (2009).
- Hunt, K.H.: Kinematic Geometry of Mechanisms. Oxford Engineering Science Series, 7 (1990).
- Buchberger, B.: Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal of Symbolic Computation 41(3-4), 475-511 (2005).
- Mayr, E.W., Meyer, A.R.: The complexity of the word problem for commutative semigroups and polynomial ideals. Advances in Mathematics 46, 305-329 (1982).
- Kovács, Z., Recio, T., Vélez, M.P.: Reasoning about linkages with dynamic geometry. Journal of Symbolic Computation 97, 16-30 (2020).

