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About geometries

Geometry is a branch of mathematics concerned with
properties of space such as the shape, distance, size, and
relative position of figures (points, lines, surfaces, solids).

Geometry plays a critical role in various scientific disciplines,
engineering, architecture, art, and everyday life.

Traditionally geometry is identified with the Euclidean or
Cartesian geometry

However, there are various approaches for studing geometry
and also various geometries.
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About geometries

Approaches

Synthetic geometry: focuses on constructing proofs and
understanding geometric properties and relationships through
axioms and deductive reasoning.
Analytic geometry: geometry using coordinate systems and
algebraic methods.
Projective geometry: studies properties preserved under
projective transformations.
Differential geometry: focuses on curves, surfaces, and smooth
manifolds.
Algebraic geometry: explores algebraic (polynomial) equations
and their geometric solutions.
Topology: Studies properties preserved under continuous
deformations.
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About geometries

Classification based on parallelism

Absolute (neutral) geometry: studies concepts independent of
the notion of parallelism

Playfair’s axiom: Given a line l and a point P /∈ l , how many
lines l ′ through P parallel with L exist?

Euclidean geometry (a single parallel line)
Non-euclidean geometries

Elliptic geometry (no parallel lines)
Hyperbolic geometry (multiple parallel lines)
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About geometries

Classification based on transformation groups

Felix Klein introduced ”Erlangen Program” aimed to categorize
geometries based on transformation groups.

Euclidean geometry (preserved by isometries: translations,
rotations, reflections)

Affine geometry (preserved by affine transformations:
combinations of translations and linear transformations)

Projective geometry (preserved by projective transformations:
collineations)

Hyperbolic geometry (preserved by hyperbolic
transformations: e.g., disc preserving Möbius transformations)

Elliptic geometry (preserved by elliptic transformations: e.g.,
sphere rotations)
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About geometries

Hyperbolic geometry

In this talk I will focus on hyperbolic geometry, mostly on the
analytic approach, with elements of projective geometry

I will describe results on:

formalization of analytic hyperbolic geometry and its models:
Poincaré disc and upper half-plane model,
(Marić, Simić, Boutry)
formalization of gyrogroups and gyrovector spaces — a very
convenient algebraic foundation of hyperbolic geometry,
(Marić, in progress)
automated solving of construction problems in absolute and
hyperbolic geometry
(Marinković, Šukilović, Marić)
visualizations of hyperbolic geometry in JavaScript,
(Marić, as a hobby)
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Formalization

Complex plane geometry

Overview

1 About geometries

2 Formalization
Complex plane geometry
Poincaré disc model
Gyrogroups and gyrovector spaces

3 Constructions in absolute and hyperbolic geometry

4 Visualization
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Formalization

Complex plane geometry

Formalization of Complex plane geometry

Filip Marić, Danijela Petrović: Formalizing Complex Plane
Geometry. Annals of Mathematics and Artificial Intelligence,
Springer, Volume 74, Issue 3, 2015.
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Formalization

Complex plane geometry

Key insights

It is very hard to formalize geometry if only geometric tools
are available

We must use results from other areas of mathematics

Our formalizations are heavily based on:

complex numbers
linear algebra
algebra
...
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Formalization

Complex plane geometry

Complex numbers

Complex numbers are very convenient for formalizing
geometry

Formulas that use complex numbers are much simpler
compared to formulas that use real numbers

There are some very good books on this subject:

Tristan Needham: Visual Complex Analysis
Hans Schwerdtfeger: Geometry of Complex Numbers
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Formalization

Complex plane geometry

Projective geometry and homogenous coordinates

Considering degenerate cases is usually avoided by using
projective geometry and homogenous coordinates

Hyperbolic geometry is usually formalized in:

RP2 – real projective plane (convenient environment for the
Klein/Beltrami model)
CP1 – complex projective line (convenient environment for the
Poincaré disc model)

Projective complex line CP1, also called extended complex
plane is obtain when the complex plane C is extended by a
single infinite point
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Formalization

Complex plane geometry

Stereographic projection

CP1 can be identified with a unit sphere by means of the
stereographic projection.

If points are projected from the north pole to the equatorial
plane, then the north pole corresponds to the infinite point.
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Formalization

Complex plane geometry

Complex projective line

We have formalized CP1 and its geometry in Isabelle/HOL.

A point is represented by homogenous coordinates:a pair
(z1, z2) of complex numbers, not both equal to zero.

If z2 6= 0, the pair represents a finite point z1
z1

, and if z2 = 0
represents the unique infinite point.

Threfore, pairs (z1, z2) and (z ′1, z
′
2) represent the same point

iff they are proportional (for some nonzero complex factor k).

Points are equivalence classes of the proportionality relation
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Formalization

Complex plane geometry

Isabelle/HOL formalization

type synonym cvec2 = "complex × complex"

typedef hc = "{v::cvec2. v 6= (0, 0)}"
definition eq cvec2 :: "cvec2 ⇒ cvec2 ⇒ bool" where

"eq cvec2 z1 z2 ⇐⇒ (∃ k::complex. k 6= 0 ∧ z2 = k * z1)"

lift definition eq hc :: "hc ⇒ hc ⇒ bool" is eq cvec2

quotient type cp1 = hc / eq hc
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Formalization

Complex plane geometry

Operations

All four basic algebraic operations can be extended from C to
CP1

For example, addition can be performed in homogenous
coordinates

(z1, z2) + (w1,w2) = (z1w2 + z2w1, z2w2)

Since points are equivalence classes it must be proved that this
operation does not depend on the choice of representatives

For finite points such operation agrees with ordinary addition
in C, and it holds that ∞+ z = z +∞ =∞ for all points
z ∈ CP1
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Formalization

Complex plane geometry

Circlines

In addition to points, basic geometric objects are lines and
circles
CP1 enables their unified treatment, so generalized circles
(called circlines) are considered.
Circlines are given by quadratic equations (in complex
homogenous coordinates):

Az1z̄1 + Bz1z̄2 + Cz̄1z2 + Dz2z̄2 = 0

for some real numbers A and D and complex numbers B and
C = B̄.
Every circline is uniquely determined by its tree different points.
A circline is a line iff it contains the infinite point (there is only
one infinite point)
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Formalization

Complex plane geometry

Stereographic projection

If stereographic projection is applied, circlines in the extended
complex plane (equatorial plane with the infinite point)
correspond to circles on the unit sphere.

Lines correspond to circles that contain the north pole.

Each cicline can be identified by a plane in the (projective) 3d
space

Figure author: Charles Delman
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Formalization

Complex plane geometry

Matrix representation

One of the key insights that facilitates formalization is that
circlines should be represented by Hermitean matrices:

H =

(
A B
C D

)
,

It holds H∗ = H, giving that Ā = A, D̄ = D, and B̄ = C .

If the point vector is z = (z1, z2)t , the circline equation
becomes:

z∗ · H · z = 0

This is a quadratic form an it can be analyzed using standard
methods of linear algebra
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Formalization

Complex plane geometry

Matrix representation

Proportional matrices (for some non-zero real factor k) yield
same circlines

Therefore, circlines are equivalence classes of Hermitean
matrices under proportionality relation

Orientation is preserved iff k > 0
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Formalization

Complex plane geometry

Disc

The sign of the quadratic form z∗ · H · z also determines
interior and exterior.

If H is a line, then both the exterior and interior are halfplanes.

The disc equation is z∗ · H · z < 0 (important for the Poincaré
model that is given within the unit disc)
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Formalization

Complex plane geometry

Möbius transformations

Central objects in each projective geometry are those that
preserve lines and incidence

Fundamental transformations in CP1 are Möbius
transformations that map circlines to circlines

Demo: mobius_mesh.html

mobius_mesh.html
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Formalization

Complex plane geometry

Möbius transformations

In the complex plane C Möbius transformations are bilinear:

f (z) =
az + b

cz + d

In CP1 Möbius transforms are linear transformations, given by
non-degenerate matrices acting on homogenous coordinates:(

z ′1
z ′2

)
=

(
a b
c d

)
·
(

z1

z2

)
, i.e., z ′ = M · z

Two matrices determine the same transformation iff they are
proportional for some non-zero complex number k

Möbius transformation is an equivalence class of
non-degenerate complex matrices under the proportionality
relation
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Formalization

Complex plane geometry

Möbius gruop

Möbius transformations of CP1 form a group PGL(2,C).

Inverse transformation is represented by the inverse matrix,
and composition of transformations is represented by matrix
product

Each Möbius transformation is a composition of translations,
homotheties, rotations and inversions

Möbius transformation is uniquely determined by images of
three different points
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Formalization

Complex plane geometry

Möbius transformations revealed

Möbius transformations correspond to transformations of the
unit sphere

Youtube: Douglas Arnold and Jonathan Rogness,
Möbius transformations revealed
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Formalization

Complex plane geometry

Cross-ratio

Cross-ratio transform given by w1, w2, w3 is the unique
Möbius transformation that maps w1 7→ 0, w2 7→ 1, and
w3 7→ ∞
Demo: cross_ratio.html

Cross-ratio of four points w1, w2, w3, w4 is the image of w4

under the cross-ratio transform

For finite points cross-ratio equals

(w4 − w1)(w2 − w3)

(w2 − w1)(w4 − w3)

Möbius transformations preserve the cross-ratio of any 4
points

4 points lie on a circline iff their crossratio is real

cross_ratio.html
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Formalization

Complex plane geometry

Möbius transformations action on circlines

Möbius transformations map circlines to circlines

When the Möbius transfromation with the matrix M is applied
to a circline H a circline

H ′ = (M−1)∗ · H · (M−1)

is obtained

H and H ′ are congruent
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Formalization

Complex plane geometry

Angles

A very subtle notion:

Is the angle beween oriented or unoriented curves?
Is the angle itself oriented or unoriented?
Is the angle always convex or are non-convex angles allowed?

Angle between circlines can be defined geometrically, as the
angle between their tangents in the intersection point

It can also be defined in purely algebraic terms
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Formalization

Complex plane geometry

Algebraic definition of angle

Assume that two circlines are given by the following
Hermitean matrices:

H1 =

(
A1 B1

C1 D1

)
H2 =

(
A2 B2

C2 D2

)
The cosine of the angle between them is given by:

cosα =
−∆H1H2

2
√
|H1| · |H2|

where
∆H1H2 = A1D2 − B1C2 + A2D1 − B2C1
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Formalization

Complex plane geometry

Angle preservation

Möbius transformations are conformal i.e., they preserve
angles

It is easy to show that algebraically

How can we be sure that what is formally proved corresponds
to elementary geometric (non-algebraic) concepts?

We formally prove that the traditional definition is equivalent
to the algebraic one, which is used for proving properties
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Formalization

Poincaré disc model

Overview
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2 Formalization
Complex plane geometry
Poincaré disc model
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3 Constructions in absolute and hyperbolic geometry

4 Visualization



Formalization, automatization and visualization of hyperbolic geometry

Formalization

Poincaré disc model

Formalization of the Poincaré disc model

Danijela Simić, Filip Marić, Pierre Boutry Formalization of the
Poincaré Disc Model of Hyperbolic Geometry, Journal of
Automated Resoning, 2020.
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Formalization

Poincaré disc model

H-points

We place the Poincaré model inside the interior of a unit disc
within CP1.

Unit disc is given by the equation x2 + y2 < 1 i.e.,
||z ||2 = z̄z < 1, which is homogenized to z1z̄1 − z2z̄2 = 0 and
represented by the matrix

Huc =

(
1 0
0 −1

)
H-points are elements z of CP1 such that z∗ · Huc · z < 1
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Formalization

Poincaré disc model

H-lines

Lines in the Poincaré model are circlines that are orthogonal
to the unit circle
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Formalization

Poincaré disc model

The previous condition implies that h-lines are represented by
Hermitean matrices of the form

H =

(
A B
B̄ A

)
, |B|2 > A2

for a complex number B and a real number A

Given two different h-points u and v , there is a unique h-line
containing them, given by

A = i · (uv̄ − v ū)

B = i · (v(|u|2 + 1)− u(|v |2 + 1)))
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Formalization

Poincaré disc model

Isometries

What transformations govern the Poincaré disc model?

These are compositions of:

Möbius transformations that preserve the unit disc
Conjugation (reflection about the x-axis)

These transformation form a group
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Formalization

Poincaré disc model

Isometries — characterization

It is formally shown that all Möbius transformations that
preserve the unit disc are compositions of:

A rotation around the origin

z 7→ e iθz

A Blaschke factor

z 7→ z − a

1− āz

a disc preserving “translation” that maps any given a in unit
disc to the origin
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Formalization

Poincaré disc model

Distance

Poincaré disc is a metric space with the following h-distance

Demo: poincare_distance.html

Each h-line intersects the unit circle in two ideal points

B

|B|2
(−A± i ·

√
|B|2 − A2)

poincare_distance.html
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Formalization

Poincaré disc model

Distance

Let i1 and i2 be the ideal points of the h-line uv .
Consider the cross-ratio function that maps i1 to 0, i2 to ∞
and u to 1, and its value for the point v — it is always a
positive real number
When v moves towards i1, cross-ratio moves to 0
When v moves to u, cross-ratio moves to 1
When v moves to i2, cross-ratio moves to ∞
The logarithm moves from −∞ to 0 to ∞
The absolute value of the logarithm of the cross-ratio has all
desired properties of a distance (triangle inequality, additivity
for h-colinear points, . . . )
Therefore we define

dh(u, v) =

∣∣∣∣log
(v − i1)(u − i2)

(v − i2)(u − i1)

∣∣∣∣
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Formalization

Poincaré disc model

Distance

It is proved that this formula reduces to

d(u, v) = arccosh

(
1 +

2 · |u − v |2

(1− |u|2) · (1− |v |2)

)
This formula depends only on u and v (it does not include the
ideal points)

The distance function satisfies triangle inequality

d(u, v) ≤ d(u,w) + d(w , u)

Poincare disc with this distance function is a metric space

Congruence of segments is reduced to distance equality
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Formalization

Poincaré disc model

Distance preservation

Isometries of the Poincaré disc preserve distances

Easy to prove for conjugation and rotations, and a bit
cumbersome for Blaschke factors
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Formalization

Poincaré disc model

Circles

h-circle is the set of h-points equidistant from a given h-point
(considering h-distance)

h-circle in the Poincaré disc is also a circle in the Euclidean
sense (however, h-center and the Euclidean center are not the
same)

h-circle centered at u with h-radius r is Euclidean circle
centered at

ue =
u

(1− |u|2) cosh r−1
2 + 1

with radius

re =
(1− |u|2)

√
cosh r−1

2 · cosh r+1
2

(1− |u|2) cosh r−1
2 + 1

=
(1− |u|2) sinh r

(1− |u|2)(cosh r − 1) + 2
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Formalization

Poincaré disc model

Betweenness

One of the central geometric relations is betweenness of points

How to define it?

Demo: between.html

A point v is between u and w if v = u or v = w or the
crossratio of u, v , w and 1

v̄ is a negative real number

Indeed, this cross-ratio is real iff v lies on the circline uw

If u is mapped to 0 and w to ∞, then one of the two arcs uv
contains only the positive values of the cross-ratio and the
other only the negative values

The point 1
v̄ is the inversion of v and it is outside the unit

circle. If the cross-ratio maps it to 1, then the arc that is
contained within the unit disc yields negative cross-ratio values

between.html
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Poincaré disc model

Cross-ratio definitions

Both the distance and betweenness are defined using
cross-ratio

This makes it easier to prove their properties

Since Möbius transformations preserve cross-ratio, they also
preserve distances and betweenness

This enables wlog reasoning when analyzing properties of
distance and betweenness
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Poincaré disc model

Tarski axioms

Finally, we proved that the Poincaré disc satisfies all Tarski’s
axioms of geometry (and the negation of the parallels
postulate)

Hardest problems were the ones that required finding
intersections of circlines

Wlog reasoning came to the rescue

Möbius transformations were employed to map one circline to
the x-axis, since we derived a relatively simple expression for
the intersection of a circline and the x-axis

x =
−Re B

A
+

sgn(Re B) ·
√

(Re B)2 − A2

A

The hardest axiom to prove was the Pasch axiom



Formalization, automatization and visualization of hyperbolic geometry

Formalization

Gyrogroups and gyrovector spaces
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Gyrogroups and gyrovector spaces

Vectors

Euclidean geometry gives us a very natural concept of a vector

Vector addition is associative and commutative, so vectors
form an Abellian group under addition

Vectors are naturally multiplied by a scalar, giving rise to a
vector space

Dot (inner) product and vector norm are also easily defined

and they give rise to the Euclidean metric (d(A,B) = ||
−→
AB||)

As we have seen, standard expositions of hyperbolic geometry
do not use vectors!
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Gyrogroups and gyrovector spaces

Gyrogoups and gyrovector spaces

Inspired by physics, Abraham A. Ungarn introduced a
framework that unifies special relativity theory and hyperbolic
geometry

The approach is based on gyrovectors — a generalization of
vectors appropriate for hyperbolic geometry

Once the appropriate algebraic foundation is introduced,
fascinating analogies between Euclidean and hyperbolic
goemetry are revealed
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Gyrogroups and gyrovector spaces

Classical vs. Relativistic physics

Classical, Newtonian kinematics takes place in the Euclidean
space
Velocities are represented by vectors and classic (Galilei)
velocity adition is the ordinary vector addition, that is both
commutative and associative
Relativistic (Einstein) velocity addition of admissible velocities
is non-commutative and non-associative
Minkowski laid down theoretical foundations of special
relativity, but did not emphasize its connections with
hyperbolic geometry
Ungarn expored the idea that hyperbolic geometry governs
velocities in relativistic physics in the same way that Euclidean
geometry governs velocities in prerelativistic physics
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Gyrogroups and gyrovector spaces

Physics and hyperbolic geometry

Let us consider two seemingly unrelatead examples:

Disc preserving Möbius transformations
Einstein’s velocity addition from special relativity theory

Both are bound to the interior of a unit disc (sphere), since all
relativistically admisiblle velocities are bound by the speed of
light c (||v || < c).
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Möbius gyrogroup

All disc preserving Möbius transformations are compositions of
translations (Blaschke factors) and rotations:

z 7→ e iθ
z + a

1 + āz

Inspired by this, let ⊕ denote Möbius addition of “vectors”
(points in the complex unit disc):

u ⊕M v =
u + v

1 + ūv

Disc preserving transfrorms are then expressed as:

z 7→ e iθ(a⊕M z)
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Möbius gyrogroup

If the center O, u and v are h-collinear Möbius addition ⊕M is
commutative and associative.

In the general case it is neither commutative nor associative.

The operation ⊕M does not yield a group. Whan algebraic
laws does it satisfy?
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Gyrogroups

Demo: gyro_mobius_addition.html

u ⊕M v and v ⊕M u are not the same, but they have the same
norm, so they are linked by a rotation: there is a unique
rotation that takes v ⊕M u to u⊕M v . Denote that rotation by

gyrM [u, v ] =
1 + ūv

1 + v̄u

It is called Möbius gyration of u and v .

Möbius gyration repairs commutativity:

u ⊕M v = gyrM [u, v ](v ⊕M u)

gyro_mobius_addition.html
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Associativity

(Not) surprisingly, gyration also repairs associativity:

u ⊕M (v ⊕M w) = (u ⊕M v)⊕M gyrM [u, v ]w

(u ⊕M v)⊕M w = u ⊕M (v ⊕M gyrM [v , u]w)
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Inverses

What about inverses?

They are used to solve equations like x ⊕M u = v .

Denote 	Mu = −u and u 	M v = u ⊕M (	Mv).

x = x ⊕M 0

= x ⊕M (u 	M u)

= (x ⊕M u)⊕M gyrM [x , u](	Mu)

= (x ⊕M u)	M gyrM [x , u]u

= v 	M gyrM [x , u]u

How to eliminate x from the RHS?
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Inverses

Loop property of gyration:

gyrM [u ⊕M v , v ] = gyrM [u, v ]

gyrM [u, v ⊕M u] = gyrM [u, v ]

Continuing the previous calculation we get

x = v 	M gyrM [x , u]u

= v 	M gyrM [x ⊕M u, u]u

= v 	M gyrM [v , u]u

Therefore gyration also repairs inverses:

x ⊕M u = v ⇔ x = v 	M gyrM [x , v ]u

We almost have a group-like structure.
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Gyrogroups and gyrovector spaces

Einstein velocity addition

Consider now the next example.

In one of his 1905. (annus mirabilis) papers, Einistein
introduced relativistic addition law for relativistically
admissible velocities. Let u, v ∈ {w ∈ R3 : ||w || < c}.

u ⊕E v =
1

1 + u·v
c2

(
u +

1

γu
v +

1

c2

γu
1 + γu

(u · v)u

)

γu =
1√

1− ||u||
2

c2
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Einstein’s gyrogroup

What algebraic properties does the Einstein addition ⊕E

poses?

As for ⊕M , adding parallel velocities is both commutative and
associative, but the general case is neither.

As for ⊕M , u ⊕E v and v ⊕E u are connected by a rotation
(called the Thomas precession in special relativity, and
experimentally determined)

Thomas precession plays the role of gyration for Einstein
addition

Once gyrations are introduced, algebraic properites of Möbius
and Einstein addition become very similar. They both give rise
to algebraic structure called gyrogroup.
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Gyrogrups

Properties of Gyrogroups can be specified axiomatically. A
groupoid (G ,⊕) is a gyrogroup if following axioms hold.

1 There is an element 0 ∈ G such that for all a ∈ G it holds
0⊕ a = a (left identity)

2 For each a ∈ G there is 	a ∈ G such that 	a⊕ a = 0 (left
inverse)

3 For each a, b, z ∈ G , there exists a unique gyr[a, b]z ∈ G such
that a⊕ (b⊕ z) = (a⊕ b)⊕ (gyr[a, b]z) (left gyroassociativity)

4 The map gyr[a, b] maps each z to gyr[a, b]z . For each
a, b ∈ G , gyr[a, b] ∈ Aut(G ,⊕) (gyroautomorphism)

5 gyr[a, b] = gyr[a⊕ b, b] (left loop)
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Gyrocommutativity, duals

A gyrogroup is gyrocommutative if a⊕ b = gyr[a, b](b ⊕ a)

Gyration can always be expressed in terms of addition:

gyr[a, b]z = 	(a⊕ b)⊕ (a⊕ (b ⊕ z))

Each gyrogroup gives rise to a dual operation called
gyrocooperation, defined by: a� b = a⊕ gyr[a,	b]b

Cooperation gives rise to some nice symmetries. For example:

x ⊕ a = b ⇔ x = b � a
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Scalar multiplication

By deriving formula for u1 ⊕E u2 ⊕E . . .⊕E uk and
generalizing it, we define:

t ⊗E v = c
(1 + ||v ||

c )t − (1− ||v ||c )t

(1 + ||v ||
c )t + (1− ||v ||c )t

v

||v ||

= c tanh

(
r · arctanh

||v ||
c

)
v

||v ||

Exactly the same definition applies for the Möbius scalar
multiplication ⊗M .
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Gyrovector space

Einstein and Möbius scalar multiplication pose properties
similar (but not exactly the same) to vector spaces

Their algebraic properties are exactly captured by the notion
of gyrovector spaces, given axiomatically.

Some axioms:

n ⊗ v = v ⊕ . . .⊕ v︸ ︷︷ ︸
n times

(t1 + t2)⊗ v = t1 ⊗ v ⊕ t2 ⊗ v
(t1 · t2)⊗ v = t1 ⊗ (t2 ⊗ v)
. . .

However:
t ⊗ (u ⊕ v) 6= t ⊗ u ⊕ t ⊗ v
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Distance function

Definition of distance is inspired by the Euclidean one:

d(u, v) = ||u 	 v ||

It satisfies gyrotriangle inequality:

d(a, c) ≤ d(a, b)⊕ d(b, c)

Finding inverse hyperbolic tangent gives us usual hyperbolic
metrics that satisfy the ordinary triangle inequalities.

h(a, b) = arctanh d(a, b)
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Hyperbolic metrics

Einstein addition gives rise to the Klein-Beltrami metric

Möbius addition gives rise to the Poincaré disc metric
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Isomorphism

Klein-Beltrami and Poincaré disc are isomorphic, with very
simple isomorphisms:

aE = 2⊗ aM , aM =
1

2
⊗ aE

Möbius and Einstein addition are easilty expressible one from
another:

u ⊕M v =
1

2
⊗ ((2⊗ u)⊕E (2⊗ v))

u ⊕E v = 2⊗ ((
1

2
⊗ u)⊕M (

1

2
⊗ v))
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Vectors and angles

Many notions can be defined in analogy with the Euclidean
geometry.
Vector between two points is the “difference” of those two
points.
Cosine of the angle between two vectors is the “scalar
product” of normalized vectors.
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Geodesics

Definition of (geodesic) lines is inspired by the Euclidean case
and paremetric equation of line a + t · (b − a), t ∈ R.
Line trough points a and b is given by:

a⊕ t ⊗ (	a⊕ b), t ∈ R

Demo: mobius_geodesic.html, einstein_geodesic.html
For Möbius addition geodesics are circle segments orthogonal
to the disc, giving Poincaré disc model
For Einstein addition geodesics are chords of the disc, giving
Klein-Beltrami disc model

mobius_geodesic.html
einstein_geodesic.html
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Pythagorean theorem

In the Poincaré disc model, Pythagorean theorem holds, but is
expressed unusually: cosh a · cosh b = cosh c

Using gyrovectors Pythagorean theorem takes its classic form
a2 ⊕ b2 = c2:
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Constructions

Vesna Marinković, Tijana Šukilović, Filip Marić, On
automating triangle constructions in absolute and hyperbolic
geometry, ADG 2021.
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Goal

Many ruler and compass constructions are valid only in
Euclidean geometry

We want to automatically find constructions that are valid in
absolute geometry

We want to automatically find constructions that are valid in
hyperbolic geometry
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Definitions and pseduo-elements

In the Euclidean case many notions can be defined in
equivalent ways. For example,

a median is the segment that connect a triangle vertex with
the midpoint of its opposite side
a median is a segment that divides the triangle area in two
exact halves

In hyperbolic case these need not coincide, so we define
different objects For example, we distinguish:

median (definition 1) and
pseudo-median (definition 2)

Some Euclidean theorems hold only for pseudo-elements (e.g.,
Euler line does not exist, but pseudo-Euler line exists)

Unfortunately, some pseudo-elements are not ruler and
compass constructible
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Theorems of absolute geometry (weaker than in Euclidean
geometry)

The three medians of a triangle intersect in one point (the
centroid G)

The three internal angle bisectors of a triangle intersect in one
point (the incenter I)

The perpendicular bisectors of triangle sides belong to the
same pencil of lines (the circumcenter need not exist)

The altitudes a triangle belong to the same pencil of lines (the
orthocenter need not exist)

. . .
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Euclidean lemmas that fail in hyperbolic geometry

The centroid G does not divide the median in 2:1 ratio

The inscribed angle subtended by a diameter need not be right

Locus of points subtending a segment under a given angle is
not a circular arc

Equidistant curve is not a line

. . .
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ArgoTriCS in hyperbolic geometry

We have identified definitions, lemmas and primitive
constructions relevant for absolute and hyperbolic geometry

We have adapted ArgoTriCS for solving constructions in
absolute and hyperbolic geometry by providing it with
appropriate lemmas and construction steps

Hyperbolic triangle has more “significant points” than the
Euclidean triangle (in the Euclidean case many points
coincide)

Loci in hyperbolic geometry can be more complicated than in
the Euclidean case where many loci are circles and lines

Ruler and compass constructions are much harder in absolute
and hyperbolic geometry (we believe that many problems are
not RC-constructible)
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ArgoDG

ArgoDG – a lightweight, open-source JavaScript library for
dynamic visualization

Some users (like myself) prefer typing to clicking

A library (API) can be better than a dedicated language
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Demo

DEMO
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Conclusions

We have described two different analytical approaches for
formalizing hyperbolic geometry

Both require advanced algebraic machinery (linear algebra
over complex field, or non-commutative, non-associative
algebraic structures)

Formalization would be extremely hard (practically impossible)
if“Without loss of generality” is not used

Euclidean geometry gives us polynomial equations over classic
fields, and automated reasoning reduces to classic algorithms
over polynomials (e.g., Gröbner basis)

In hyperbolic geometry usually we deal with expressions that
involve transcendental functions (e.g., sinh, cosh, . . . )

Gyrovectors give expressions identical to Euclidean, and
polynomial equations, but they hide non-standard operations,
whose theory is not well-developed
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