Formalization, automatization and visualization of hyperbolic geometry

Filip Marić
*Faculty of Mathematics, University of Belgrade

ADG 2023, Belgrade, 21. 9. 2023.

- Geometry is a branch of mathematics concerned with properties of space such as the shape, distance, size, and relative position of figures (points, lines, surfaces, solids).
- Geometry plays a critical role in various scientific disciplines, engineering, architecture, art, and everyday life.
- Traditionally geometry is identified with the Euclidean or Cartesian geometry
- However, there are various approaches for studing geometry and also various geometries.

Approaches

- Synthetic geometry: focuses on constructing proofs and understanding geometric properties and relationships through axioms and deductive reasoning.
- Analytic geometry: geometry using coordinate systems and algebraic methods.
- Projective geometry: studies properties preserved under projective transformations.
- Differential geometry: focuses on curves, surfaces, and smooth manifolds.
- Algebraic geometry: explores algebraic (polynomial) equations and their geometric solutions.
- Topology: Studies properties preserved under continuous deformations.

Classification based on parallelism

- Absolute (neutral) geometry: studies concepts independent of the notion of parallelism
- Playfair's axiom: Given a line I and a point $P \notin I$, how many lines I^{\prime} through P parallel with L exist?
- Euclidean geometry (a single parallel line)
- Non-euclidean geometries
- Elliptic geometry (no parallel lines)

■ Hyperbolic geometry (multiple parallel lines)

Classification based on transformation groups

Felix Klein introduced "Erlangen Program" aimed to categorize geometries based on transformation groups.

■ Euclidean geometry (preserved by isometries: translations, rotations, reflections)
■ Affine geometry (preserved by affine transformations: combinations of translations and linear transformations)
■ Projective geometry (preserved by projective transformations: collineations)

- Hyperbolic geometry (preserved by hyperbolic transformations: e.g., disc preserving Möbius transformations)
■ Elliptic geometry (preserved by elliptic transformations: e.g., sphere rotations)

Hyperbolic geometry

- In this talk I will focus on hyperbolic geometry, mostly on the analytic approach, with elements of projective geometry
- I will describe results on:
- formalization of analytic hyperbolic geometry and its models: Poincaré disc and upper half-plane model, (Marić, Simić, Boutry)
- formalization of gyrogroups and gyrovector spaces - a very convenient algebraic foundation of hyperbolic geometry, (Marić, in progress)
- automated solving of construction problems in absolute and hyperbolic geometry (Marinković, Šukilović, Marić)
- visualizations of hyperbolic geometry in JavaScript, (Marić, as a hobby)

Lomplex plane geometry

Overview

1 About geometries

2 Formalization

- Complex plane geometry
- Poincaré disc model
- Gyrogroups and gyrovector spaces

3 Constructions in absolute and hyperbolic geometry

4 Visualization

Formalization of Complex plane geometry

■ Filip Marić, Danijela Petrović: Formalizing Complex Plane Geometry. Annals of Mathematics and Artificial Intelligence, Springer, Volume 74, Issue 3, 2015.

Lomplex plane geometry

Key insights

- It is very hard to formalize geometry if only geometric tools are available
■ We must use results from other areas of mathematics
- Our formalizations are heavily based on:
- complex numbers
- linear algebra
- algebra

$\left\llcorner_{\text {Formalization }}\right.$

- Complex plane geometry

Complex numbers

■ Complex numbers are very convenient for formalizing geometry

- Formulas that use complex numbers are much simpler compared to formulas that use real numbers
- There are some very good books on this subject:
- Tristan Needham: Visual Complex Analysis
- Hans Schwerdtfeger: Geometry of Complex Numbers
- Complex plane geometry

Projective geometry and homogenous coordinates

■ Considering degenerate cases is usually avoided by using projective geometry and homogenous coordinates
■ Hyperbolic geometry is usually formalized in:

- $\mathbb{R} P^{2}$ - real projective plane (convenient environment for the Klein/Beltrami model)
- $\mathbb{C} P^{1}$ - complex projective line (convenient environment for the Poincaré disc model)
- Projective complex line $\mathbb{C} P^{1}$, also called extended complex plane is obtain when the complex plane \mathbb{C} is extended by a single infinite point

$\left\llcorner_{\text {Formalization }}\right.$

- Complex plane geometry

Stereographic projection

- $\mathbb{C} P^{1}$ can be identified with a unit sphere by means of the stereographic projection.
- If points are projected from the north pole to the equatorial plane, then the north pole corresponds to the infinite point.

$\left\llcorner_{\text {Formalization }}\right.$

- Complex plane geometry

Complex projective line

- We have formalized $\mathbb{C} P^{1}$ and its geometry in Isabelle/HOL.
- A point is represented by homogenous coordinates:a pair $\left(z_{1}, z_{2}\right)$ of complex numbers, not both equal to zero.
- If $z_{2} \neq 0$, the pair represents a finite point $\frac{z_{1}}{z_{1}}$, and if $z_{2}=0$ represents the unique infinite point.
- Threfore, pairs $\left(z_{1}, z_{2}\right)$ and $\left(z_{1}^{\prime}, z_{2}^{\prime}\right)$ represent the same point iff they are proportional (for some nonzero complex factor k).
- Points are equivalence classes of the proportionality relation

Isabelle/HOL formalization

type_synonym cvec2 = "complex \times complex"
typedef hc $=$ "\{v::cvec2. $v \neq(0,0)\} "$
definition eq_cvec2 : : "cvec2 \Rightarrow cvec2 \Rightarrow bool" where
"eq_cvec2 $z_{1} \quad z_{2} \Longleftrightarrow\left(\exists k:\right.$:complex. $\left.k \neq 0 \wedge z_{2}=k * z_{1}\right)$ "
lift_definition eq_hc :: "hc $\Rightarrow \mathrm{hc} \Rightarrow$ bool" is eq_cvec2
quotient_type $\mathrm{cp} 1=\mathrm{hc} /$ eq_hc

Operations

- All four basic algebraic operations can be extended from \mathbb{C} to $\mathbb{C} P^{1}$
■ For example, addition can be performed in homogenous coordinates

$$
\left(z_{1}, z_{2}\right)+\left(w_{1}, w_{2}\right)=\left(z_{1} w_{2}+z_{2} w_{1}, z_{2} w_{2}\right)
$$

- Since points are equivalence classes it must be proved that this operation does not depend on the choice of representatives
- For finite points such operation agrees with ordinary addition in \mathbb{C}, and it holds that $\infty+z=z+\infty=\infty$ for all points $z \in \mathbb{C} P^{1}$

Lomplex plane geometry

Circlines

- In addition to points, basic geometric objects are lines and circles
- $\mathbb{C} P^{1}$ enables their unified treatment, so generalized circles (called circlines) are considered.
- Circlines are given by quadratic equations (in complex homogenous coordinates):

$$
A z_{1} \bar{z}_{1}+B z_{1} \bar{z}_{2}+C \bar{z}_{1} z_{2}+D z_{2} \bar{z}_{2}=0
$$

for some real numbers A and D and complex numbers B and $C=\bar{B}$.

- Every circline is uniquely determined by its tree different points.
- A circline is a line iff it contains the infinite point (there is only one infinite point)

L Complex plane geometry

Stereographic projection

- If stereographic projection is applied, circlines in the extended complex plane (equatorial plane with the infinite point) correspond to circles on the unit sphere.
■ Lines correspond to circles that contain the north pole.
- Each cicline can be identified by a plane in the (projective) 3d space

Figure author: Charles Delman

- Complex plane geometry

Matrix representation

■ One of the key insights that facilitates formalization is that circlines should be represented by Hermitean matrices:

$$
H=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right),
$$

It holds $H^{*}=H$, giving that $\bar{A}=A, \bar{D}=D$, and $\bar{B}=C$.

- If the point vector is $z=\left(z_{1}, z_{2}\right)^{t}$, the circline equation becomes:

$$
z^{*} \cdot H \cdot z=0
$$

- This is a quadratic form an it can be analyzed using standard methods of linear algebra
- Complex plane geometry

Matrix representation

- Proportional matrices (for some non-zero real factor k) yield same circlines
- Therefore, circlines are equivalence classes of Hermitean matrices under proportionality relation
- Orientation is preserved iff $k>0$

LComplex plane geometry

Disc

- The sign of the quadratic form $z^{*} \cdot H \cdot z$ also determines interior and exterior.
- If H is a line, then both the exterior and interior are halfplanes.
- The disc equation is $z^{*} \cdot H \cdot z<0$ (important for the Poincaré model that is given within the unit disc)

Lomplex plane geometry

Möbius transformations

■ Central objects in each projective geometry are those that preserve lines and incidence

- Fundamental transformations in $\mathbb{C} P^{1}$ are Möbius transformations that map circlines to circlines

■ Demo: mobius_mesh.html

$\left\llcorner_{\text {Formalization }}\right.$

- Complex plane geometry

Möbius transformations

■ In the complex plane \mathbb{C} Möbius transformations are bilinear:

$$
f(z)=\frac{a z+b}{c z+d}
$$

- In $\mathbb{C} P^{1}$ Möbius transforms are linear transformations, given by non-degenerate matrices acting on homogenous coordinates:

$$
\binom{z_{1}^{\prime}}{z_{2}^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{z_{1}}{z_{2}} \text {, i.e., } z^{\prime}=M \cdot z
$$

- Two matrices determine the same transformation iff they are proportional for some non-zero complex number k
- Möbius transformation is an equivalence class of non-degenerate complex matrices under the proportionality relation

Lomplex plane geometry

Möbius gruop

- Möbius transformations of $\mathbb{C} P^{1}$ form a group $\operatorname{PGL}(2, \mathbb{C})$.
- Inverse transformation is represented by the inverse matrix, and composition of transformations is represented by matrix product
■ Each Möbius transformation is a composition of translations, homotheties, rotations and inversions
■ Möbius transformation is uniquely determined by images of three different points

- Formalization
 - Complex plane geometry
 Möbius transformations revealed

■ Möbius transformations correspond to transformations of the unit sphere
■ Youtube: Douglas Arnold and Jonathan Rogness, Möbius transformations revealed

Lomplex plane geometry

Cross-ratio

- Cross-ratio transform given by w_{1}, w_{2}, w_{3} is the unique Möbius transformation that maps $w_{1} \mapsto 0, w_{2} \mapsto 1$, and $w_{3} \mapsto \infty$
■ Demo: cross_ratio.html
■ Cross-ratio of four points $w_{1}, w_{2}, w_{3}, w_{4}$ is the image of w_{4} under the cross-ratio transform
- For finite points cross-ratio equals

$$
\frac{\left(w_{4}-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w_{2}-w_{1}\right)\left(w_{4}-w_{3}\right)}
$$

■ Möbius transformations preserve the cross-ratio of any 4 points

- 4 points lie on a circline iff their crossratio is real

Möbius transformations action on circlines

- Möbius transformations map circlines to circlines
- When the Möbius transfromation with the matrix M is applied to a circline H a circline

$$
H^{\prime}=\left(M^{-1}\right)^{*} \cdot H \cdot\left(M^{-1}\right)
$$

is obtained

- H and H^{\prime} are congruent

Lomplex plane geometry

Angles

- A very subtle notion:
- Is the angle beween oriented or unoriented curves?
- Is the angle itself oriented or unoriented?
- Is the angle always convex or are non-convex angles allowed?
- Angle between circlines can be defined geometrically, as the angle between their tangents in the intersection point
- It can also be defined in purely algebraic terms

Algebraic definition of angle

- Assume that two circlines are given by the following Hermitean matrices:

$$
H_{1}=\left(\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right) \quad H_{2}=\left(\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right)
$$

- The cosine of the angle between them is given by:

$$
\cos \alpha=\frac{-\Delta H_{1} H_{2}}{2 \sqrt{\left|H_{1}\right| \cdot\left|H_{2}\right|}}
$$

- where

$$
\Delta H_{1} H_{2}=A_{1} D_{2}-B_{1} C_{2}+A_{2} D_{1}-B_{2} C_{1}
$$

Angle preservation

■ Möbius transformations are conformal i.e., they preserve angles
■ It is easy to show that algebraically

- How can we be sure that what is formally proved corresponds to elementary geometric (non-algebraic) concepts?
- We formally prove that the traditional definition is equivalent to the algebraic one, which is used for proving properties

LPoincaré disc model

Overview

1 About geometries

2 Formalization

- Complex plane geometry
- Poincaré disc model
- Gyrogroups and gyrovector spaces

3 Constructions in absolute and hyperbolic geometry

4 Visualization

Formalization of the Poincaré disc model

- Danijela Simić, Filip Marić, Pierre Boutry Formalization of the Poincaré Disc Model of Hyperbolic Geometry, Journal of Automated Resoning, 2020.

H-points

- We place the Poincaré model inside the interior of a unit disc within $\mathbb{C} P^{1}$.
■ Unit disc is given by the equation $x^{2}+y^{2}<1$ i.e., $\|z\|^{2}=\bar{z} z<1$, which is homogenized to $z_{1} \bar{z}_{1}-z_{2} \bar{z}_{2}=0$ and represented by the matrix

$$
H_{u c}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

■ H-points are elements z of $\mathbb{C} P^{1}$ such that $z^{*} \cdot H_{u c} \cdot z<1$

■ Lines in the Poincaré model are circlines that are orthogonal to the unit circle

- The previous condition implies that h-lines are represented by Hermitean matrices of the form

$$
H=\left(\begin{array}{cc}
A & B \\
\bar{B} & A
\end{array}\right),|B|^{2}>A^{2}
$$

for a complex number B and a real number A

- Given two different h-points u and v, there is a unique h-line containing them, given by

$$
\begin{aligned}
& A=i \cdot(u \bar{v}-v \bar{u}) \\
& \left.B=i \cdot\left(v\left(|u|^{2}+1\right)-u\left(|v|^{2}+1\right)\right)\right)
\end{aligned}
$$

Isometries

■ What transformations govern the Poincaré disc model?

- These are compositions of:
- Möbius transformations that preserve the unit disc
- Conjugation (reflection about the x -axis)
- These transformation form a group

Isometries - characterization

■ It is formally shown that all Möbius transformations that preserve the unit disc are compositions of:

- A rotation around the origin

$$
z \mapsto e^{i \theta} z
$$

- A Blaschke factor

$$
z \mapsto \frac{z-a}{1-\bar{a} z}
$$

a disc preserving "translation" that maps any given a in unit disc to the origin

Distance

- Poincaré disc is a metric space with the following h-distance

■ Demo: poincare_distance.html

- Each h-line intersects the unit circle in two ideal points

$$
\frac{B}{|B|^{2}}\left(-A \pm i \cdot \sqrt{|B|^{2}-A^{2}}\right)
$$

Distance

■ Let i_{1} and i_{2} be the ideal points of the h-line $u v$.

- Consider the cross-ratio function that maps i_{1} to $0, i_{2}$ to ∞ and u to 1 , and its value for the point v - it is always a positive real number
- When v moves towards i_{1}, cross-ratio moves to 0 When v moves to u, cross-ratio moves to 1 When v moves to i_{2}, cross-ratio moves to ∞
- The logarithm moves from $-\infty$ to 0 to ∞
- The absolute value of the logarithm of the cross-ratio has all desired properties of a distance (triangle inequality, additivity for h-colinear points, ...)
- Therefore we define

$$
d_{h}(u, v)=\left|\log \frac{\left(v-i_{1}\right)\left(u-i_{2}\right)}{\left(v-i_{2}\right)\left(u-i_{1}\right)}\right|
$$

Distance

- It is proved that this formula reduces to

$$
d(u, v)=\operatorname{arccosh}\left(1+\frac{2 \cdot|u-v|^{2}}{\left(1-|u|^{2}\right) \cdot\left(1-|v|^{2}\right)}\right)
$$

- This formula depends only on u and v (it does not include the ideal points)
- The distance function satisfies triangle inequality

$$
d(u, v) \leq d(u, w)+d(w, u)
$$

- Poincare disc with this distance function is a metric space
- Congruence of segments is reduced to distance equality

Distance preservation

- Isometries of the Poincaré disc preserve distances

■ Easy to prove for conjugation and rotations, and a bit cumbersome for Blaschke factors

Circles

- h -circle is the set of h-points equidistant from a given h-point (considering h-distance)
- h-circle in the Poincaré disc is also a circle in the Euclidean sense (however, h-center and the Euclidean center are not the same)
■ h-circle centered at u with h-radius r is Euclidean circle centered at

$$
u_{e}=\frac{u}{\left(1-|u|^{2}\right) \frac{\cosh r-1}{2}+1}
$$

with radius

$$
r_{e}=\frac{\left(1-|u|^{2}\right) \sqrt{\frac{\cosh r-1}{2} \cdot \frac{\cosh r+1}{2}}}{\left(1-|u|^{2}\right) \frac{\cosh r-1}{2}+1}=\frac{\left(1-|u|^{2}\right) \sinh r}{\left(1-|u|^{2}\right)(\cosh r-1)+2}
$$

Betweenness

- One of the central geometric relations is betweenness of points
- How to define it?

■ Demo: between.html

- A point v is between u and w if $v=u$ or $v=w$ or the crossratio of u, v, w and $\frac{1}{\bar{v}}$ is a negative real number
- Indeed, this cross-ratio is real iff v lies on the circline $u w$
- If u is mapped to 0 and w to ∞, then one of the two arcs $u v$ contains only the positive values of the cross-ratio and the other only the negative values
- The point $\frac{1}{\bar{v}}$ is the inversion of v and it is outside the unit circle. If the cross-ratio maps it to 1 , then the arc that is contained within the unit disc yields negative cross-ratio values

Cross-ratio definitions

- Both the distance and betweenness are defined using cross-ratio
- This makes it easier to prove their properties

■ Since Möbius transformations preserve cross-ratio, they also preserve distances and betweenness

- This enables wlog reasoning when analyzing properties of distance and betweenness

Tarski axioms

■ Finally, we proved that the Poincaré disc satisfies all Tarski's axioms of geometry (and the negation of the parallels postulate)

- Hardest problems were the ones that required finding intersections of circlines
- Wlog reasoning came to the rescue

■ Möbius transformations were employed to map one circline to the x-axis, since we derived a relatively simple expression for the intersection of a circline and the x-axis

$$
x=\frac{-\operatorname{Re} B}{A}+\frac{\operatorname{sgn}(\operatorname{Re} B) \cdot \sqrt{(\operatorname{Re} B)^{2}-A^{2}}}{A}
$$

- The hardest axiom to prove was the Pasch axiom
$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Overview

1 About geometries

2 Formalization

- Complex plane geometry
- Poincaré disc model
- Gyrogroups and gyrovector spaces

3 Constructions in absolute and hyperbolic geometry

4 Visualization

- Euclidean geometry gives us a very natural concept of a vector

■ Vector addition is associative and commutative, so vectors form an Abellian group under addition

- Vectors are naturally multiplied by a scalar, giving rise to a vector space
■ Dot (inner) product and vector norm are also easily defined and they give rise to the Euclidean metric $(d(A, B)=\|\overrightarrow{A B}\|)$
- As we have seen, standard expositions of hyperbolic geometry do not use vectors!

Gyrogoups and gyrovector spaces

■ Inspired by physics, Abraham A. Ungarn introduced a framework that unifies special relativity theory and hyperbolic geometry
■ The approach is based on gyrovectors - a generalization of vectors appropriate for hyperbolic geometry

- Once the appropriate algebraic foundation is introduced, fascinating analogies between Euclidean and hyperbolic goemetry are revealed

Classical vs. Relativistic physics

- Classical, Newtonian kinematics takes place in the Euclidean space
- Velocities are represented by vectors and classic (Galilei) velocity adition is the ordinary vector addition, that is both commutative and associative
- Relativistic (Einstein) velocity addition of admissible velocities is non-commutative and non-associative
- Minkowski laid down theoretical foundations of special relativity, but did not emphasize its connections with hyperbolic geometry
- Ungarn expored the idea that hyperbolic geometry governs velocities in relativistic physics in the same way that Euclidean geometry governs velocities in prerelativistic physics

Physics and hyperbolic geometry

- Let us consider two seemingly unrelatead examples:
- Disc preserving Möbius transformations
- Einstein's velocity addition from special relativity theory

■ Both are bound to the interior of a unit disc (sphere), since all relativistically admisiblle velocities are bound by the speed of light $c(\|v\|<c)$.
$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Möbius gyrogroup

- All disc preserving Möbius transformations are compositions of translations (Blaschke factors) and rotations:

$$
z \mapsto e^{i \theta} \frac{z+a}{1+\bar{a} z}
$$

■ Inspired by this, let \oplus denote Möbius addition of "vectors" (points in the complex unit disc):

$$
u \oplus_{M} v=\frac{u+v}{1+\bar{u} v}
$$

- Disc preserving transfrorms are then expressed as:

$$
z \mapsto e^{i \theta}\left(a \oplus_{M} z\right)
$$

$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Möbius gyrogroup

- If the center O, u and v are h-collinear Möbius addition \oplus_{M} is commutative and associative.

■ In the general case it is neither commutative nor associative.

- The operation \oplus_{M} does not yield a group. Whan algebraic laws does it satisfy?

$\left\llcorner_{\text {Formalization }}\right.$

$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Gyrogroups

■ Demo: gyro_mobius_addition.html
■ $u \oplus_{M} v$ and $v \oplus_{M} u$ are not the same, but they have the same norm, so they are linked by a rotation: there is a unique rotation that takes $v \oplus_{M} u$ to $u \oplus_{M} v$. Denote that rotation by

$$
\operatorname{gyr}_{M}[u, v]=\frac{1+\bar{u} v}{1+\bar{v} u}
$$

It is called Möbius gyration of u and v.
■ Möbius gyration repairs commutativity:

$$
u \oplus_{M} v=\operatorname{gyr}_{M}[u, v]\left(v \oplus_{M} u\right)
$$

Associativity

■ (Not) surprisingly, gyration also repairs associativity:

$$
\begin{aligned}
& u \oplus_{M}\left(v \oplus_{M} w\right)=\left(u \oplus_{M} v\right) \oplus_{M} \operatorname{gyr}_{M}[u, v] w \\
& \left(u \oplus_{M} v\right) \oplus_{M} w=u \oplus_{M}\left(v \oplus_{M} \operatorname{gyr}_{M}[v, u] w\right)
\end{aligned}
$$

Inverses

- What about inverses?

■ They are used to solve equations like $x \oplus_{M} u=v$.
■ Denote $\ominus_{M} u=-u$ and $u \ominus_{M} v=u \oplus_{M}\left(\ominus_{M} v\right)$.

$$
\begin{aligned}
x & =x \oplus_{M} 0 \\
& =x \oplus_{M}\left(u \ominus_{M} u\right) \\
& =\left(x \oplus_{M} u\right) \oplus_{M} \operatorname{gyr}_{M}[x, u]\left(\ominus_{M} u\right) \\
& =\left(x \oplus_{M} u\right) \ominus_{M} \operatorname{gyr}_{M}[x, u] u \\
& =v \ominus_{M} \operatorname{gyr}_{M}[x, u] u
\end{aligned}
$$

■ How to eliminate x from the RHS?
$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Inverses

- Loop property of gyration:

$$
\begin{aligned}
\operatorname{gyr}_{M}\left[u \oplus_{M} v, v\right] & =\operatorname{gyr}_{M}[u, v] \\
\operatorname{gyr}_{M}\left[u, v \oplus_{M} u\right] & =\operatorname{gyr}_{M}[u, v]
\end{aligned}
$$

■ Continuing the previous calculation we get

$$
\begin{aligned}
x & =v \ominus_{M} \operatorname{gyr}_{M}[x, u] u \\
& =v \ominus_{M} \operatorname{gyr}_{M}\left[x \oplus_{M} u, u\right] u \\
& =v \ominus_{M} \operatorname{gyr}_{M}[v, u] u
\end{aligned}
$$

■ Therefore gyration also repairs inverses:

$$
x \oplus_{M} u=v \Leftrightarrow x=v \ominus_{M} \operatorname{gyr}_{M}[x, v] u
$$

■ We almost have a group-like structure.

- Formalization

$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Einstein velocity addition

- Consider now the next example.
- In one of his 1905. (annus mirabilis) papers, Einistein introduced relativistic addition law for relativistically admissible velocities. Let $u, v \in\left\{w \in \mathbb{R}^{3}:\|w\|<c\right\}$.

$$
\begin{gathered}
u \oplus_{E} v=\frac{1}{1+\frac{u \cdot v}{c^{2}}}\left(u+\frac{1}{\gamma_{u}} v+\frac{1}{c^{2}} \frac{\gamma_{u}}{1+\gamma_{u}}(u \cdot v) u\right) \\
\gamma_{u}=\frac{1}{\sqrt{1-\frac{\|u\|^{2}}{c^{2}}}}
\end{gathered}
$$

Einstein's gyrogroup

■ What algebraic properties does the Einstein addition \oplus_{E} poses?

- As for \oplus_{M}, adding parallel velocities is both commutative and associative, but the general case is neither.
- As for $\oplus_{M}, u \oplus_{E} v$ and $v \oplus_{E} u$ are connected by a rotation (called the Thomas precession in special relativity, and experimentally determined)
- Thomas precession plays the role of gyration for Einstein addition
- Once gyrations are introduced, algebraic properites of Möbius and Einstein addition become very similar. They both give rise to algebraic structure called gyrogroup.

-Formalization

$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Gyrogrups

- Properties of Gyrogroups can be specified axiomatically. A groupoid (G, \oplus) is a gyrogroup if following axioms hold.

1 There is an element $0 \in G$ such that for all $a \in G$ it holds $0 \oplus a=a$ (left identity)
2 For each $a \in G$ there is $\ominus a \in G$ such that $\ominus a \oplus a=0$ (left inverse)
3 For each $a, b, z \in G$, there exists a unique $\operatorname{gyr}[a, b] z \in G$ such that $a \oplus(b \oplus z)=(a \oplus b) \oplus(\operatorname{gyr}[a, b] z)$ (left gyroassociativity)
4 The map gyr $[a, b]$ maps each z to gyr $[a, b] z$. For each $a, b \in G, \operatorname{gyr}[a, b] \in \operatorname{Aut}(G, \oplus)$ (gyroautomorphism)
$5 \operatorname{gyr}[a, b]=\operatorname{gyr}[a \oplus b, b]$ (left loop)

Gyrocommutativity, duals

- A gyrogroup is gyrocommutative if $a \oplus b=\operatorname{gyr}[a, b](b \oplus a)$
- Gyration can always be expressed in terms of addition:

$$
\operatorname{gyr}[a, b] z=\ominus(a \oplus b) \oplus(a \oplus(b \oplus z))
$$

- Each gyrogroup gives rise to a dual operation called gyrocooperation, defined by: $a \boxplus b=a \oplus \operatorname{gyr}[a, \ominus b] b$
■ Cooperation gives rise to some nice symmetries. For example:

$$
x \oplus a=b \Leftrightarrow x=b \boxminus a
$$

Scalar multiplication

■ By deriving formula for $u_{1} \oplus_{E} u_{2} \oplus_{E} \ldots \oplus_{E} u_{k}$ and generalizing it, we define:

$$
\begin{aligned}
t \otimes_{E} v & =c \frac{\left(1+\frac{\|v\|}{c}\right)^{t}-\left(1-\frac{\|v\|}{c}\right)^{t}}{\left(1+\frac{\|v\|}{c}\right)^{t}+\left(1-\frac{\|v\|}{c}\right)^{t}} \frac{v}{\|v\|} \\
& =c \tanh \left(r \cdot \operatorname{arctanh} \frac{\|v\|}{c}\right) \frac{v}{\|v\|}
\end{aligned}
$$

■ Exactly the same definition applies for the Möbius scalar multiplication \otimes_{M}.

- Formalization

$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Gyrovector space

- Einstein and Möbius scalar multiplication pose properties similar (but not exactly the same) to vector spaces
- Their algebraic properties are exactly captured by the notion of gyrovector spaces, given axiomatically.
- Some axioms:
$\square n \otimes v=\underbrace{v \oplus \ldots \oplus v}_{n \text { times }}$
$\square\left(t_{1}+t_{2}\right) \otimes v=t_{1} \otimes v \oplus t_{2} \otimes v$
$\square\left(t_{1} \cdot t_{2}\right) \otimes v=t_{1} \otimes\left(t_{2} \otimes v\right)$
■ ...
■ However:

$$
t \otimes(u \oplus v) \neq t \otimes u \oplus t \otimes v
$$

Distance function

- Definition of distance is inspired by the Euclidean one:

$$
d(u, v)=\|u \ominus v\|
$$

- It satisfies gyrotriangle inequality:

$$
d(a, c) \leq d(a, b) \oplus d(b, c)
$$

■ Finding inverse hyperbolic tangent gives us usual hyperbolic metrics that satisfy the ordinary triangle inequalities.

$$
h(a, b)=\operatorname{arctanh} d(a, b)
$$

$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Hyperbolic metrics

■ Einstein addition gives rise to the Klein-Beltrami metric
■ Möbius addition gives rise to the Poincaré disc metric

$\left\llcorner_{\text {Formalization }}\right.$

$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Isomorphism

- Klein-Beltrami and Poincaré disc are isomorphic, with very simple isomorphisms:

$$
a_{E}=2 \otimes a_{M}, \quad a_{M}=\frac{1}{2} \otimes a_{E}
$$

■ Möbius and Einstein addition are easilty expressible one from another:

$$
\begin{aligned}
u \oplus_{M} v & =\frac{1}{2} \otimes\left((2 \otimes u) \oplus_{E}(2 \otimes v)\right) \\
u \oplus_{E} v & =2 \otimes\left(\left(\frac{1}{2} \otimes u\right) \oplus_{M}\left(\frac{1}{2} \otimes v\right)\right)
\end{aligned}
$$

Vectors and angles

- Many notions can be defined in analogy with the Euclidean geometry.
■ Vector between two points is the "difference" of those two points.
- Cosine of the angle between two vectors is the "scalar product" of normalized vectors.

$\left\llcorner_{\text {Formalization }}\right.$

$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Geodesics

- Definition of (geodesic) lines is inspired by the Euclidean case and paremetric equation of line $a+t \cdot(b-a), t \in \mathbb{R}$.
■ Line trough points a and b is given by:

$$
a \oplus t \otimes(\ominus a \oplus b), \quad t \in \mathbb{R}
$$

■ Demo: mobius_geodesic.html, einstein_geodesic.html
■ For Möbius addition geodesics are circle segments orthogonal to the disc, giving Poincaré disc model

- For Einstein addition geodesics are chords of the disc, giving Klein-Beltrami disc model

- Formalization

$\left\llcorner_{\text {Gyrogroups and gyrovector spaces }}\right.$

Pythagorean theorem

- In the Poincaré disc model, Pythagorean theorem holds, but is expressed unusually: cosh $a \cdot \cosh b=\cosh c$
- Using gyrovectors Pythagorean theorem takes its classic form $a^{2} \oplus b^{2}=c^{2}$:

Constructions

- Vesna Marinković, Tijana Šukilović, Filip Marić, On automating triangle constructions in absolute and hyperbolic geometry, ADG 2021.

Goal

- Many ruler and compass constructions are valid only in Euclidean geometry
- We want to automatically find constructions that are valid in absolute geometry
■ We want to automatically find constructions that are valid in hyperbolic geometry

Definitions and pseduo-elements

- In the Euclidean case many notions can be defined in equivalent ways. For example,
- a median is the segment that connect a triangle vertex with the midpoint of its opposite side
- a median is a segment that divides the triangle area in two exact halves
- In hyperbolic case these need not coincide, so we define different objects For example, we distinguish:
- median (definition 1) and
- pseudo-median (definition 2)

■ Some Euclidean theorems hold only for pseudo-elements (e.g., Euler line does not exist, but pseudo-Euler line exists)

- Unfortunately, some pseudo-elements are not ruler and compass constructible

Theorems of absolute geometry (weaker than in Euclidean geometry)

- The three medians of a triangle intersect in one point (the centroid G)
- The three internal angle bisectors of a triangle intersect in one point (the incenter I)
- The perpendicular bisectors of triangle sides belong to the same pencil of lines (the circumcenter need not exist)
- The altitudes a triangle belong to the same pencil of lines (the orthocenter need not exist)

Euclidean lemmas that fail in hyperbolic geometry

- The centroid G does not divide the median in 2:1 ratio
- The inscribed angle subtended by a diameter need not be right

■ Locus of points subtending a segment under a given angle is not a circular arc
■ Equidistant curve is not a line

ArgoTriCS in hyperbolic geometry

- We have identified definitions, lemmas and primitive constructions relevant for absolute and hyperbolic geometry
■ We have adapted ArgoTriCS for solving constructions in absolute and hyperbolic geometry by providing it with appropriate lemmas and construction steps
■ Hyperbolic triangle has more "significant points" than the Euclidean triangle (in the Euclidean case many points coincide)
- Loci in hyperbolic geometry can be more complicated than in the Euclidean case where many loci are circles and lines
- Ruler and compass constructions are much harder in absolute and hyperbolic geometry (we believe that many problems are not RC-constructible)

ArgoDG

- ArgoDG - a lightweight, open-source JavaScript library for dynamic visualization
- Some users (like myself) prefer typing to clicking
- A library (API) can be better than a dedicated language
- Visualization

DEMO

Conclusions

■ We have described two different analytical approaches for formalizing hyperbolic geometry

- Both require advanced algebraic machinery (linear algebra over complex field, or non-commutative, non-associative algebraic structures)
- Formalization would be extremely hard (practically impossible) if "Without loss of generality" is not used
- Euclidean geometry gives us polynomial equations over classic fields, and automated reasoning reduces to classic algorithms over polynomials (e.g., Gröbner basis)
- In hyperbolic geometry usually we deal with expressions that involve transcendental functions (e.g., sinh, cosh, ...)
- Gyrovectors give expressions identical to Euclidean, and polynomial equations, but they hide non-standard operations, whose theory is not well-developed

