Automated Completion of Statements and Proofs

in Synthetic Geometry:
an Approach based on Constraint Solving

Salwa Tabet Gonzalez  Predrag Jani¢i¢  Julien Narboux
University of Belgrade, Serbia  University of Strasbourg, France

Automated Deduction in Geometry, September 2023, Beograd.

Gonzalez, Janigi¢, Narboux Automated Completion of Statements and Proofs



Automated deduction in general
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Automated deduction in geometry

Conjecture
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Conjecturing and proving

@ But real mathematical activity does not fit into this picture.

e Conjecturing/refuting/proving/producing lemmas, theories or
definitions are interlaced activities. See Lakatos !

1 Proofs and Refutations (1976).
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Our approach
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Our approach
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Our approach

Hints:

Partial
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Conjecture [P
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Lemma to
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Coherent Logic / Finitary Geometric Implications

A formula of coherent logic (universally closed):

Ao()?) VANAN An—l()?) = 3)7(50()?, )7) V...V Bm_l(f, }7))

where universal closure is assumed, A; denotes an atomic
formula, and B; denotes a conjunction of atomic formulae.

@ No function symbols of arity > 0 and no negations
@ Many theories can be simply formulated in CL

@ Every FOL theory can be translated into CL, possible with
additional predicate symbols

o For instance, for each predicate symbol R, a new symbol Ris
introduced for =R, and the axioms: VX(R(X) A R(X) = 1),
VX(R(X) V R(X))
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Inference System for Coherent Logic

-, -,

I, ax, Ao(g), e ,An_l(é'), 30(5, b) V...V Bm_l(é', b) FP
[, ax, Ag(3), .. An_1(3) - P

MP

where ax is
Ao()_(’) VANPIRAN An—l()?) = 3)7(80()?, _)) V...V Bm—l()a )7))

NB()FP ... T,Bn_1(6)FP
r, Bo((__") V...V Bm,1(8) P

QEDcs (case split)

— - — —— QEDas (assumption)
I, Bi(a, b)F3y(Bo(a,y) V...V Bn_1(3,¥))

TIEp QEDefq (ex falso quodlibet)
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Inference System for Coherent Logic: Example

Consider the following two axioms:
axl: Vx (p(x) = r(x) V q(x)) ax2: Vx (q(x) = 1)

and the conjecture: Vx (p(x) = r(x))

EDef
axl,ax2, p(a),q(a), L F r(a) Q 4
QEDas MP (ax2)
ax1, ax2, p(a), r(a) - r(a) ax1, ax2, p(a), q(a) F r(a) QED
ax1, ax2, p(a), r(a) Vv q(a) F r(a) MP(ax1) CS
ax1,ax2,p(a) - r(a) .
The same proof in a forward manner, in a natural language form:

Consider an arbitrary a such that: p(a). It should be proved that r(a).

1. r(a) Vv q(a) (by MP, from p(a) using axiom axl; instantiation: X — a)

2. Case r(a):
3. Proved by assumption! (by QEDas)
4. Case g(a):

5. L (by MP, from g(a) using axiom ax2; instantiation: X — a)
6. Contradiction! (by QEDefq)
7. Proved by case split! (by QEDcs, by r(a), q(a))
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Starting ldeas

@ The pure forward chaining approach to ATP does not take the
goal into account.
@ SAT/SMT solvers have seen huge progress in the recent years.

@ Encoding the problem of finding a Coherent Logic proof into
SAT /SMT theories can give a form of multidirectional
reasoning.
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Theorem Proving as Constraint Solving

@ In traditional automated proving:

o the search is performed over a set of formulae, and it
terminates once the goal formula or contradiction is found.

e a proof can then be reconstructed as a byproduct of this
process.

@ In our approach, proving as constraint solving:

e a proof of a given formula can be represented by a sequence of
natural numbers, meeting some constraints;

o the search is performed globally over a set of possible proofs
(i.e., over a set of possible sequences of natural numbers);

e a proof is found by a solver that finds a sequence that meets
these conditions.

e a proper proof can be reconstructed from the found sequence.
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Encoded Proof: Example

0. 1 00 20 /* Nesting: 1; Step kind:0 = Assumption;
Branching: no; p2(a) */
1. 1131 4 06 0 /x Nesting: 1; Step kind:13 = MP-axiom:13;
Branching: yes; p4(a) or p6(a) */
0 /* From steps: (0) */
0 /* Instantiation */

2. 2 20 40 /* Nesting: 2; Step kind:2 = First case;
Branching: no; p4(a) */
3. 210 /* Nesting: 2; Step kind:10 =
QED by assumption; */
4. 3 30 6 0 /* Nesting: 3; Step kind:3 = Second case;
Branching: no; p6(a) */
5. 3140 0 /* Nesting: 3; Step kind:14=MP-axiom:14);

Branching: no; p0() */
4 /x From steps: (4) */
0 /* Instantiation */
6. 311 /* Nesting: 3; Step kind:11 = QED by EFQ;*/
7. 1 9 /* Nesting: 1; Step kind:9 = QED by cases;*/
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Related work

Surprisingly (as far as we know), this approach has hardly been
studied extensively. Only, partly related:

@ Todd Deshane, Wenjin Hu, Patty Jablonski, Hai Lin,
Christopher Lynch, and Ralph Eric McGregor. Encoding First
Order Proofs in SAT, CADE-21, 2007.

@ Jeremy Bongio, Cyrus Katrak, Hai Lin, Christopher Lynch,
and Ralph Eric McGregor. Encoding First Order Proofs in
SMT. ENTCS, 198(2):71-84, 2008.
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Proof encoding and constraints

@ We generate constraints that a sequence of natural numbers
represents a valid proof.

@ Proofs by cases are encoded by associating nesting
information to each proof step.

@ Each proof consists of steps of the following types:
Assumption, MP, FirstCase, SecondCase, QEDbyCases,
QEDbyAssumption, QEDbyEFQ

@ Contents corresponds to a disjunction in a proof step, Goal
is true iff Contents is the goal...

@ There are also global constraints
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Example: Constraints for steps QEDbyEFQ

@ Each proof step has one of the above sorts and meets some
constraints

e For instance, if the step s is of the kind QEDbyEFQ), then the
following conditions hold:

@ StepKind(s) = QEDbyEFQ
@s5>0

@ contents(s —1)(0) = L

@ step s is the goal

© Nesting(s) =Nesting(s — 1)
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@ A maximal proof length M is given.

@ Proof steps and the constraints are encoded by natural
numbers.

@ A constraint solver (for linear arithmetic, for instance), is
invoked to find a model.

@ There is a proof of length < M iff there is a model for the
constraints.

© If there is a model, then a proof can be reconstructed from it.

Q@ A proof for a proof assistant, a readable proof, an illustrated
proof then can be constructed from the proof.
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Completing incomplete premises: Abduction (1/5)

Given a theory 7 and a conjecture G, assuming that 7 [~ G
and 7 [~ =G, the objective is to find a set of atomic formulae
F, such that it holds:

o T.FFG
o the set {7, F} is consistent

The formulas in F are called the abducts.
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Completing incomplete premises: Abduction (2/5)

There can be additional conditions. In Larus (an abduct makes the
step /):

@ StepKind(i/) =Assumption

@ Nesting(i) =1

© Cases(i) = false

© ContentsPredicate(i, 0) < sizeof (Signature)

@ for each argument j (up to maximal arity):
ContentsArgument(i, 0, j) < sizeof (Constants)

Q Goal(i) = false
@ ContentsPredicate(i,0) # L
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Completing incomplete premises: Abduction (3/5)

0 ax0: VX (p(X) = q(X))
Q@ axl: VX (g(X) = r(X)Vs(X))
Q ax2: VX (r(X)= 1)

Conjecture: VX (s(X))

The conjecture cannot be proved, but Larus offers two abducts:

1. set:

1. ((a(®)))
Abducts CONSISTENT!
Conjecture: VX (1 g(X) = s(X))

2. set:

1. ((p®N)
Abducts CONSISTENT!
Conjecture: VX (| p(X) = s(X))
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Completing incomplete premises: Abduction (4/5)

A H Let ABCD be a quadrilateral. Let E, F, G
D the midpoints of AB, BC et CD
respectively. Let H be a point.
E Under which assumption the quadrilateral
G EFGH is a parallelogram ?

B — H should be the midpoint of segment
F AD.
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Completing incomplete premises: Abduction (5/5)

Consider arbitrary a, b, ¢, d, e, f, g, h such that:

e —col(b,d,a), e b#d,
e —col(b,d,c), @ a#c,
e —col(a,c,b), e midpoint(a, e, b),
e —col(a,c,d), e midpoint(b, f,c),
e —col(e,f,g), e midpoint(c, g, d).

It should be proved that pG(e,f,g, h).
Abducts found:
e midpoint(d, h, a)
1. par(a, c,e, f) (by MP, from —col(a, ¢, b), midpoint(b, f, c), midpoint(a, e, b)
using axiom triangle_mid_par_strict; instantiation: A+ a, B¢, C— b, P— f, Q

e)
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Completing incomplete goals: Deducts (1/2)

Let ABCD be a quadrilateral. Let E, F, G,
H be the midpoints of the segments [AB],
[BC], [CD] and [DA] respectively.
What can we say about EFGH ?

— EFGH is a parallelogram.
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Completing incomplete goals: Deducts (2/2)

It should be proved that (e, f, g, h).

2. par(a, c, e, f) (by MP, from —col(a, ¢, b), midpoint(b, f, c), midpoint(a, e, b)
using axiom triangle_mid_par_strict; instantiation: A— a, B—c¢, C— b, P — f, Q
o)

3. par(a, c, h, g) (by MP, from —col(a, ¢, d), midpoint(c, g,d), midpoint(a, h, d)
using axiom triangle_mid_par _strict; instantiation: A+~ a, B— ¢, C— d, P— g, Q
— h)

4, par(e, f, g, h) (by MP, from par(a,c, e, f), par(a,c, h,g), —col(e, f,g) using
axiom lemma_par_trans; instantiation: A—~ e, B—~ f,C+—a, D—c, E— g, F—
")

5. Proved by assumption! (by QEDas)
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Completing incomplete proofs: Hints (1/3)

9.3 Lemma. Badc AmE€A AMamo o P€A+Vblazh +BbAc] .
(Wenn a und ¢ auf entgegengesetzten Seiten der Geraden A lie-
gen, und swar spiegelbildlich bezilglich eines Punktes von 4,
und r auf A liegt, so liegt jeder Punkt b der Halbgeraden
H(ra) entgegengesetst zu c bezilglich 4, Abb, 33.)

Beweis: Sei a;b. Nach Def. 6.1(ii)
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Completing incomplete proofs: Hints (2/3)

@ Hint can be found in an informal proof (for instance, in a
textbook), from machine verifiable proof, or from memory!
@ For a proof or a proof step, hint can specify:

the predicate symbol

arguments in the atomic formula
the ordinal of a proof step

the axiom applied in the step

@ In other provers, such hints are extremely difficult to use

@ In some cases, hints can lead to significant speed-ups
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Completing incomplete proofs: Hints (3/3)

@ Using this approach, the user can add constraints either to
help the prover or to find a specific proof.

@ Examples:
e predicate r must appear somewhere in the proof:
fof (hintnameO, hint, r(?,?), _, _)

e ax2 must be used in the proof at step 3, instantiating both
arguments with the same value

fof (hintnameO, hint, _, 3, ax2(A,A))
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@ Many generated abducts/deducts are ,,uninteresting" or
mutually similar

@ There are different restrictions in abduction considered in the
literature and we will consider different criteria for filtering out
,,interesting " abducts/deducts (for instance, minimal in some
sense)
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Conclusions

@ We have shown that we can extend a prover, which uses
constraint solving, so that it can complete:

o partially specified hypotheses
e partially specified conclusions
o partially specified proofs
@ All three tasks fit naturally into proving as constraint solving
paradigm: it is only that some constraints are added or deleted

@ To our knowledge, this approach is new, and we are not aware
of any other systems that tackle these three completion
problems.
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