

Thierry Dana-Picard - Mathias Tejera - Eva Ulbrich
ndp (at) jct.ac.il - matutejera (at) gmail.com - eva.ulbrich (at) gmx.at

Motivations

Newspapers and TV news are full of reports about launching satellites to space crbiting objects space from for example the International Space Station (ISS), the Chinese space sation.
Projects such as Mars exploration and the Artemis project aim to establish a permanent human presence on the moon.

In August 2020, for instance, three spacecrafts have been launched towards Mars and NASA enables the public to register for sending their names on a probe, which will launch in 2024 and will arrive at Encelade, an icy moon of Jupiter, in 2030.

With such an ubiquitous topic, interest in students is raised and some ask a lot of questions.
Some of them ask about spacecrafts, many of them wish to understand the trajectories.

> STEAM

Science Technology Engineering Arts Mathematics

The Solar System nextextาขt

For some incitations to astronomy and related topics, refer also e.g. to Lila Korinova's talk earlier today (using AR and smartphones)

Because of the wide range of orbits' radii, it is impossible to represent all the system respecting the true proportions.
In what follows, we consider pairs of neighboring planets.

Modellings standard procedure

Mathematical modelling is characterized through its interplay of reality and mathematics. It offers a way to integrate references to reality into the classroom and shows students where in everyday life their mathematical knowledge can be applied."
The process:
a. A real-world problem is given and analyzed.
b. It is translated into a mathematical setting (Descartes claimed that every problem has to be transformed into a system of equations).
c. The mathematical problem is solved.
d. The solutions have to be interpreted and validated with respect to reality.

From modelling towards other directions

Kepler laws

- First law: The orbit of every planet is an ellipse with the Sun at one of the two foci.
- Second law: A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.

- Third law: The ratio of the square of an object's orbital period with the cube of the semi-major axis of its orbit is the same for all objects orbiting the same primary.

Why circular models?

－Moon
－Earth
Sun

Animation：https：／／youtu．be／W47Wa7onrIQ

Space curves, orbits and Kepler's drawing

 nevt2าวาข2ากTh. Dana-Picard and S. Hershkovitz (2023): From Space to Maths And to Arts: Virtual Art in Space with Planetary Orbits, to appear in Electronic Journal of Mathematics \& Technology.

Kepler used Tycho Braha's mountains of data to find the exact direction of Mars from the earth at a whole series of times at 687.1 day intervals. If Mars can be observed from two different positions when it is at a particular point in its orbit, then one can triangulate the location of Mars. Finding the direction of Mars and that of the Sun at those times, he had a steady Mars-Sun baseline to use in constructing Mars's orbit viewed from the Earth.
J. Kepler: Astronomia Nova (https://archive.org/stream/astronomianovaaiOOkepl\#page/4/mode/2up)

Bicircular movements in opposite directions madifixathe relative angular speeds

Why include retrograde movements?

Artemis

The first uncrewed, integrated flight test of NASA's Orion spacecraft and Space Launch System rocket, launching from a modernized Kennedy spaceport

Bicircular movement

- Both in the same direction
- In reversed directions

$$
\begin{aligned}
& x=a \cos t+r \sin (b t) \\
& y=a \sin t+r \cos (b t)
\end{aligned}
$$

Tricircular movements

com

Sprouting Endothelial Cells by Karina Kinghorn of Cell Biology and Physiology.
 $3{ }^{\text {rd }}$ place in a Science and Art Competition 2019

The University of North Carolina at Chapel Hill The College for Arts and Science https://college.unc.edu/2020/01/science-art/

Transition to 3D

लक勹2 24042

2 multicolor loops.ggb
File Edit View Options Tools Window Help

$\xrightarrow{\stackrel{\text { Algebra }}{ }} \quad \begin{aligned} \mathrm{y} & =0.64\left(0.77\left(\cos (\mathrm{u})+\frac{1}{2} \cos (4 \mathrm{u})+\frac{1}{3} \sin (15 \mathrm{u})\right)-0.1^{\wedge}\right.\end{aligned}$

- $c^{\prime \prime \prime}: \quad x=0.77\left(0.77\left(0.77\left(\cos (\mathrm{u})+\frac{1}{2} \cos (4 \mathrm{u})+\frac{1}{3} \sin (15 \mathrm{u})\right.\right.\right.$
- $\mathrm{y}=0.64\left(0.77\left(0.77\left(\cos (\mathrm{u})+\frac{1}{2} \cos (4 \mathrm{u})+\frac{1}{3} \sin (15 u)\right.\right.\right.$ $\mathrm{x}=0.77\left(0.77\left(0.77\left(0.77\left(\cos (\mathrm{u})+\frac{1}{2} \cos (4 \mathrm{u})+\frac{1}{3} \sin (\right.\right.\right.\right.$ $\mathrm{y}=0.64\left(0.77\left(0.77\left(0.77\left(\cos (\mathrm{u})+\frac{1}{2} \cos (4 \mathrm{u})+\frac{1}{3} \sin (\right.\right.\right.\right.$ $\mathrm{x}=0.77\left(0.77\left(0.77\left(0.77\left(0.77\left(\cos (\mathrm{u})+\frac{1}{2} \cos (4 \mathrm{u})+\right.\right.\right.\right.\right.$
- d ${ }^{\prime}$ $\mathrm{y}=0.64\left(0.77\left(0.77\left(0.77\left(0.77\left(\cos (\mathrm{u})+\frac{1}{2} \cos (4 \mathrm{u})+\right.\right.\right.\right.\right.$ $\mathrm{x}=0.77\left(0.77\left(0.77\left(0.77\left(0.77\left(\mathrm{cos}(\mathrm{u})+\frac{1}{2} \operatorname{co}\right.\right.\right.\right.\right.$. $\mathrm{y}=0.64\left(0.77\left(0.77\left(0.77(0.77) 0.77\left(\cos (\mathrm{u})+\frac{1}{2} \operatorname{co}\right.\right.\right.\right.$. $x=0.77(0.77(0.77(0.77) 0.77(0.77(0.77) \cos (\mathrm{u})$ y $\mathrm{y}=0.64(0.77(0.77(0.77) 0.77(0.77) 0.77(\cos (\mathrm{u})$ $\mathrm{x}=0.77$ (0.77 (0.77 (0.77 (0.77 (0.77 (0.77 (0.77 (co $\mathrm{y}=0.64(0.77(0.77) 0.77(0.77) 0.77(0.77) 0.77$ (co
$\mathrm{B}=(3.5,0.5)$
$\mathrm{x}=\cos (\mathrm{u})+\frac{1}{2} \cos (4 \mathrm{u})+\frac{1}{3} \sin (15 \mathrm{u})$
- M: $\left.y=\sin (u)+\frac{1}{2} \sin (4 u)+\frac{1}{3} \cos (15 u)\right\} 0 \leq u \leq 6.28$ $\left.\begin{array}{l}\mathrm{y}=\sin (\mathrm{u})+\frac{1}{2} \sin (4 \mathrm{u})+\frac{1}{3} \cos (15 \mathrm{u}) \\ \mathrm{z}=\mathrm{u}\end{array}\right\}$
| Input:

Model Sun-Planet-Satellite

ch
Sun-planet-satellite.ggb

The Sun, the planet and its satellite are in a plane perpendicular to the Sun trajectory

The same with Maple

restart; with(plots);
$c 1:=$ spacecurve ([cos $\left.(\mathrm{t})+1 / 5^{*} \cos \left(12^{*} \mathrm{t}\right), \sin (\mathrm{t})+1 / 5^{*} \sin \left(12^{*} \mathrm{t}\right), \mathrm{t}\right], \mathrm{t}=0 . .4^{*} \mathrm{Pi}$, thickness = 3, labels $=[x, y, z]$);
sat $:=$ plots[animate](spacecurve, $\left[\left[\cos (t)+1 / 5^{*} \cos \left(12^{*} t\right), \sin (t)+1 / 5^{*} \sin \left(12^{*} t\right), t\right], t\right.$ $=0 . . \mathrm{A}], \mathrm{A}=0 . .4^{*} \mathrm{Pi}$, color = sienna, labels $=[\mathrm{x}, \mathrm{y}, \mathrm{z}]$);
planet $:=$ plots[animate](spacecurve, $[[\cos (t), \sin (t), t], t=0 . . A], A=0 . .4^{*} \mathrm{Pi}$, thickness = 3, color = navy);
sun $:=$ plots[animate](spacecurve, $[[0,0, t], t=0 . . A], A=0 . .4^{*} P i$, thickness $=3$, color = yellow);
sunplo $:=$ plots[animate](pointplot3d, $[[0,0, \mathrm{~A}]], \mathrm{A}=0 . .4 * \mathrm{Pi}$, color = orange, symbol = sphere);
display(sun, planet, sat, sunplo);
spacecraft := plots[animate](spacecurve, $\left[\left[\cos (t)+1 / 5^{*} \cos \left(12^{*} t\right)+1 / 8^{*} \cos \left(14^{*} t\right)\right.\right.$, $\left.\left.\sin (t)+1 / 5^{*} \sin \left(12^{*} t\right)+1 / 8^{*} \sin \left(14^{*} t\right), t\right], t=0 . . A\right], A=0 . .4^{*} P i$, labels $\left.=[x, y, z]\right)$;
 display(sunplo, sun, planet, sat, spacecraft);

A twisted lemniscate

$$
l l:=\text { plot }\left(\left[\frac{\sin (t)}{1+\cos (t)^{2}}, \frac{\sin (t) \cdot \cos (t)}{1+\cos (t)^{2}}, t=0 . .2 \cdot \mathrm{Pi}\right] \text {, scaling }=\text { constrained, thickness }=3 \text {, color }=\text { blue }\right) ;
$$

$$
\text { tll }:=\operatorname{plot3d}\left(\left[\frac{\sin (t)}{1+\cos (t)^{2}}, \frac{\sin (t) \cdot \cos (t)}{1+\cos (t)^{2}}, \sin (t)^{2}\right], t=0 \ldots \cdot 2 \cdot \mathrm{Pi}, \text { thickness }=6 \text {, axes }=\text { normal, scaling }=\text { constrained }\right) ;
$$

A.montwisted lemniscate - 3D printed

1. The equations must be identified by the software as a geometric construct
2. The curve has to be thickened in order to be 3D printed. The thickness option of the DGS/CAS is not enough
3. The entire object may not be 3D printed in one piece

Ancmentwisted lemniscate - 3D printed

1. The equations must be identified by the software as a geometric construct 2. The curve has to be thickened in order to be 3D printed. The thickness option of the DGS/CAS is not enough
2. The entire object may not be 3D printed in one piece

- What is the benefit?
- A new visualization
- Can be grasped with hands
- R. Duval (1996): not as in scientific domains as Physics, Chemistry, etc., mathematical objects cannot be grapsed and manipulated with the hands. They can be studied using representations (numerical, symbolic, graphical, etc.)
- 3D printing adds a new register of representation

An astroidal surface

plot3d([$\left.\cos (u)^{\wedge} 3^{*} \cos (v)^{\wedge} 3, \cos (u)^{\wedge} 3^{*} \sin (v)^{\wedge} 3, \sin (u)^{\wedge} 3\right], \mathrm{u}=0 . .2^{\star} \mathrm{Pi}, \mathrm{v}=0 .$. Pi, labels $\left.=[\mathrm{x}, \mathrm{y}, \mathrm{z}]\right)$

Geometric loci - general nonsense

DThe computation of geometric loci is an important topic:

- High-School level
- undergraduate level.

Not necessarily with
the same tools
-This topic has been explored for a long time, but has a lot of novelties to offer.
-We may have used GeoGebra's Locus and/or LocusEquation commands. The output is a stills picture.
GGenerally we used animations, both with GeoGebra and with Maple.

- It fits more the dynamical features of the planetary orbits which were the trigger of the activities (at least at the beginning)
- Maybe useful for students' understanding of the modeled situation
- The same Maple programming works in 2D and in 3D
- This reinforces man-and-machine interaction.

Some references

- F. Botana and M. Abánades (2014). Automatic Deduction in (Dynamic) Geometry: Loci Computation, Computational Geometry 47 (1), 75-89.
- J. Blazek and P. Pech (2017) Searching for loci using GeoGebra, International Journal for Technology in Mathematics Education 27, 143-147.
- Th. Dana-Picard and N. Zehavi (2019). Automated study of envelopes: The transition from 2D to 3D, Electronic Journal of Mathematics \& Technology13 (2), 121-135.
- B. Anđić, E. Ulbrich, Th. Dana-Picard, S. Cvjetićanin, F. Petrović, Z. Lavicza and M. Maričić (2022): A Phenomenography Study of STEM Teachers' Conceptions of Using Three-Dimensional Modeling and Printing (3DMP) in Teaching, Journal of Science Education and Technology.
- Th. Dana-Picard and T. Recio (2023): Dynamic construction of a family of octic curves as geometric loci, AIMS Mathematics 8 (8), 19461-19476.
- Th. Dana-Picard, Z. Kovács, Dynamic and automated constructions of plane curves, Maple Transactions, (2023), In press.
- Th. Dana-Picard and S. Hershkovitz (2023): From Space to Maths and to Arts: Virtual Art in Space with Planetary Orbits, to appear in Electronic Journal of Mathematics \& Technology.
- Th. Dana-Picard, Z. Kovács and Wei-Chi Yang (2023): Topology of Quartic Loci Resulted From Lines Passing through a Fixed Point and a Conic, CGTA 2023 (Conference on Geometry: Theory and Applications), , Kefermarkt, Austria.

 Thank you for your attention

Thierry Dana-Picard - Mathias Tejera - Eva Ulbrich ndp (at) jct.ac.il - matutejera (at) gmail.com - eva.ulbrich (at) gmx.at

JERUSALEM COLLEGE OF TECHNOLOGY LEV ACADEMIC CENTER

JYU
 JOHANNES KEPLER UNIVERSITY LINZ

