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Gupta’s independence model for Pasch

Points: F2 where F is a real closed field.

AB ≡ CD := (xA−xB)
2+(yA−yB)

2 = (xC−xD)
2+(yC−yD)

2.

A B C := ∃k, 0 ≤ k ≤ 1 ∧ B − A = k(C − A) at the
exception of the cases where A = B and both A and C belong
to the x-axis.
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Szczerba’s axiom system

Identity for betweenness
Inner transitivity for betweenness
Outer transitivity for betweenness

Transitivity for congruence
Reflexivity for congruence

Identity for congruence
Segment Construction

Pasch A X Q ∧ C Q B ⇒ ∃P,A P C ∧ B X P
Five-Segment

Lower 2-Dimensional
Upper 2-Dimensional

Euclid ¬(A B C ∨ B C A ∨ C A B) ⇒
∃CC ,ACC ≡ BCC ∧ ACC ≡ CCC

Continuity
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Pursuing the project faithfully will require that we take
the extreme measure of shutting out the entreaties of
our intuitions and imaginations - a forced separation
of mental powers that will quite understandably be
confusing and difficult to maintain [...].
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The axioms
Transitivity for betweenness
Transitivity for betweenness A B D ∧ B C D ⇒ A B C
Transitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CD
Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B
Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A X Q ∧ C Q B ⇒ ∃P,A P C ∧ B X P
B ̸= Q ∧ Q ̸= C ∧ ¬(A B C ∨ B C A ∨ C A B) ⇒

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′ ∧ AD ≡ A′D′ ∧ BD ≡ B′D′∧
A B C ∧ A′ B′ C ′ ∧ A ̸= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B
Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P ̸= Q∧

Transitivity for betweenness A ̸= B ∧ B ̸= C ∧ A ̸= C ⇒
A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A ̸= D ⇒
∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y )) ⇒
∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )

Point equality decidability X = Y ∨ X ̸= Y
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A few definitions

Collinearity

A B C ∨ B C A ∨ C A B

Coplanarity

∃X , (Col AB X ∧ Col C D X ) ∨ (Col AC X ∧ Col B D X ) ∨
(Col AD X ∧ Col B C X )

Strict parallelism

A ̸= B ∧ C ̸= D ∧ Cp AB C D ∧ ¬∃X ,Col AB X ∧ Col C D X

Parallelism

AB ∥s CD ∨ (A ̸= B ∧ C ̸= D ∧ Col AC D ∧ Col B C D)

P. Boutry et al.
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Proclus’ axiom

Axiom (Proclus’ axiom)

AB ∥ CD ∧ Col AB P ∧ ¬Col AB Q ⇒
∃Y ,Col C D Y ∧ Col P Q Y
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Axiom (Proclus’ axiom)

AB ∥ CD ∧ Col AB P ∧ ¬Col AB Q ⇒
∃Y ,Col C D Y ∧ Col P Q Y
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The axioms

We have formalized that:

Tarski’s system of geometry,

Gupta’s axiom system,

and this set of axioms are equivalent.
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Point equality decidability X = Y ∨ X ̸= Y
Reflexivity for congruence AB ≡ BA
Transitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CD

Identity for congruence AB ≡ CC ⇒ A = B
Segment Construction ∃E ,A B E ∧ BE ≡ CD

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′ ∧ AD ≡ A′D′ ∧ BD ≡ B′D′∧
A B C ∧ A′ B′ C ′ ∧ A ̸= B ⇒ CD ≡ C ′D′

Pasch A P C ∧ B Q C ∧ A ̸= P ∧ P ̸= C∧
B ̸= Q ∧ Q ̸= C ∧ ¬(A B C ∨ B C A ∨ C A B) ⇒
∃X ,P X B ∧ Q X A

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B
Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P ̸= Q∧

Transitivity for betweenness A ̸= B ∧ B ̸= C ∧ A ̸= C ⇒
A B C ∨ B C A ∨ C A B

Proclus
Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y )) ⇒

∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )
Symmetry for betweenness A B C ⇒ C B A
Transitivity for betweenness A B D ∧ B C D ⇒ A B C
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Parallel postulates are not equivalent
How to classify the postulates?
The axioms

The axioms

A0’ X = Y ∨ X ̸= Y
A1’ AB ≡ BA
A2’ AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CD
A3’ AB ≡ CC ⇒ A = B
A4’ ∃E ,A B E ∧ BE ≡ CD
A5’ AB ≡ A′B′ ∧ BC ≡ B′C ′ ∧ AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A ̸= B ⇒ CD ≡ C ′D′

A7’ A P C ∧ B Q C ∧ A ̸= P ∧ P ̸= C∧
B ̸= Q ∧ Q ̸= C ∧ ¬(A B C ∨ B C A ∨ C A B) ⇒
∃X ,P X B ∧ Q X A

A8’ ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B
A9’ AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P ̸= Q∧

Transitivity for betweenness A ̸= B ∧ B ̸= C ∧ A ̸= C ⇒
A B C ∨ B C A ∨ C A B

A10’
A11’ ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y )) ⇒

∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )
A14’ A B C ⇒ C B A
A15’ A B D ∧ B C D ⇒ A B C
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An independent version of Tarski’s system of geometry

:
formalization of 10 out of 13 counter-models in Coq. Inner Pasch
holds in the models that were given for outer Pasch.

To make sure that we did not introduce any change in the axioms
between the various models we relied on predicates which, given a
model, capture the property that a given axiom holds.

Many properties of the model of Tarski’s system of geometry could
be reused.

The GeoCoq library also proved very useful as it allowed
us to combine the algebraic and geometric reasoning.

We are currently extending for a more constructive version of the
axioms which would also allow to capture n-dimensional geometry.

We had to correct one of Gupta’s models.

We found a mistake in
the communication between Tarski and Givant about Tarski’s
System of Geometry.

P. Boutry et al.
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