Logic	Coq's syntax
false	False
true	True
a = b	a = b
$a \neq b$	a <> b
not A	~ A
A or B	A \/ B
A and B	А /\ В
A implies B	A -> B
A is equivalent to B	A <-> B
f(x, y, z)	(f x y z)
$\forall xy, P(x, y)$	forall (x:A) (y:B), P x y
$\exists xy, P(x, y)$	exists (x:A) (y:B), P x y

Coq/	GeoCoq	cheat	sheets
------	--------	-------	--------

р \/ q	destruct H as [H1 H2]
p /\ q	destruct H as [H1 H2]
p -> q	apply H
p <-> q	apply H
~p	apply H
False	contradiction
forall x, p	apply H or apply H in
exists x, p	destruct H as [x G]
To introduce a new hypot	hesis H use tactic
assert (Hnew: stm).	
assert (Hnew:= proof)	
Adhoc Tactics for Geomet	try
Add collinearity	agaamt aala
	assert_cois
Add betweeness	assert_bets
Add betweeness Add inequalities	assert_cors assert_bets assert_diffs
Add betweeness Add inequalities Deduce equalities	assert_cols assert_bets assert_diffs treat_equalities
Add betweeness Add inequalities Deduce equalities Preudo-transitivity of Col	assert_cols assert_bets assert_diffs treat_equalities ColR
Add betweeness Add inequalities Deduce equalities Preudo-transitivity of Col Assumption modulo per	assert_cols assert_bets assert_diffs treat_equalities ColR muta- finish
Add betweeness Add inequalities Deduce equalities Preudo-transitivity of Col Assumption modulo peritions	assert_cols assert_bets assert_diffs treat_equalities ColR muta- finish
Add betweeness Add inequalities Deduce equalities Preudo-transitivity of Col Assumption modulo peri tions Assumption modulo peri	assert_cols assert_bets assert_diffs treat_equalities ColR muta- finish muta- sfinish
Add betweeness Add inequalities Deduce equalities Preudo-transitivity of Col Assumption modulo peri- tions Assumption modulo peri- tions and pseudo-transitiv	assert_cols assert_bets assert_diffs treat_equalities ColR muta- finish muta- sfinish
Add betweeness Add inequalities Deduce equalities Preudo-transitivity of Col Assumption modulo per- tions Assumption modulo per- tions and pseudo-transitiv Col	assert_cols assert_bets assert_diffs treat_equalities ColR muta- finish muta- sfinish rity of
Add betweeness Add inequalities Deduce equalities Preudo-transitivity of Col Assumption modulo per- tions Assumption modulo per- tions and pseudo-transitiv Col apply a lemma modulo per-	assert_cols assert_bets assert_diffs treat_equalities ColR muta- finish muta- sfinish vity of ermu- perm_apply

To use hypothesis H . . . use tactic . . .

When the goal is	use tactic
p /\ q	split
p \/ q	left or right
p -> q	intro H
~p	intro H
p <-> q	split
forall x, p	intro x
exists x, p	exists t
an assumption	assumption
a definition	unfold

Coq	Notation	Explanation	Definition
Bet A B C	A - B - C	points A, B and C are collinear and B is between A and C, it can be the case the $A = B$ or $B = C$.	
Cong A B C D	$AB \equiv CD$	the segments AB and CD are congruent	
Col A B C	$\operatorname{Col}ABC$	points A, B and C are collinear	$A – B – C \lor B – A – C \lor A – C – B$
Out O A B	$O \rightarrow A \leftrightarrow B$	B belongs to the half line OA	$O \neq A \land O \neq B \land (O - A - B \lor O - B - A)$
Midpoint M A B	A - M - B	M is the midpoint of segment AB	$A - M - B \wedge AM \equiv BM$
TS A B P Q	$A \xrightarrow{Q} B$	${\cal P}$ and ${\cal Q}$ are on different sides of line AB	$\neg\operatorname{Col}PAB\wedge\neg\operatorname{Col}QAB\wedge\exists T,\operatorname{Col}TAB\wedge P{-}T{-}Q$
OS A B X Y	A - B	X and Y are on the same side of line AB	$\exists Z, A \xrightarrow{Z} B \land A \xrightarrow{Z} B$
Coplanar A B C D	$\operatorname{Cp}^{AI} B C D$	A, B, C and D belong to the same plane	$\exists X, (\operatorname{Col} A B X \land \operatorname{Col} C D X) \lor (\operatorname{Col} A C X \land \operatorname{Col} B D X) \lor (\operatorname{Col} A D X \land \operatorname{Col} B C X)$
Concyclic A B C D		A, B, C and D belong to the same circle	$Coplanar ABCD \land \exists O \ OA \equiv OB \land OA \equiv OC \land OA \equiv OD$
Per A B C	$\bigtriangleup A B C$	the triangle ABC is a right triangle in B	$\exists C', C + B + C' \land AC \equiv AC'$
$Perp_at P A B C D$	$AB \underset{P}{\perp} CD$	$AB \perp CD$ and P is the intersection of AB and CD	$A \neq B \land C \neq D \land \operatorname{Col} PAB \land \operatorname{Col} PCD \land (\forall UV, \operatorname{Col} UAB \Rightarrow \operatorname{Col} VCD \Rightarrow \land UPV)$
Perp A B C D	$AB \perp CD$	line AB is perpendicular to line CD	$\exists P, AB \perp CD$
Par_strict A B C D Y	$AB \parallel_s CD$	line AB is parallel to line CD and $AB \neq CD$	$A \neq B \land C \neq D \land \operatorname{Cp} A B C D \land \neg \exists X, \operatorname{Col} X A B \land \operatorname{Col} X C D$
Par A B C D	$AB \parallel CD$	line AB is parallel to line CD	$AB \parallel_{s} CD \lor (A \neq B \land C \neq D \land \operatorname{Col} A C D \land \operatorname{Col} B C D)$
Perp2 A B C D P	$AB \perp CD_P$	the line AB and CD have a common perpendicular through P	$\exists X, \exists Y, \operatorname{Col} PXY \wedge XY \perp AB \wedge XY \perp CD$
Le A B C D	AB < CD	the length AB is smaller or equal to length CD	$\exists E, C - Y - D \land AB \equiv CE$
Lt A B C D	$AB \stackrel{-}{<} CD$	the length AB is smaller to length CD	$AB \le CD \land \neg AB \equiv CD$
Ge A B C D	$AB \ge CD$	the length AB is greater or equal to length CD	$CD \le AB$
Gt A B C D	AB > CD	the length AB is greater than length CD	CD < AB
CongA A B C D E F	$A B C \stackrel{\scriptscriptstyle\frown}{=} D E F$	the angles $\angle ABC$ and $\angle DEF$ are congruent	$\begin{array}{l} A \neq B \land C \neq B \land D \neq E \land F \neq E \land \\ \exists A', \exists C', \exists D', \exists F', B - A - A' \land AA' \equiv ED \land \\ B - C - C' \land CC' \equiv EF \land E - D - D' \land DD' \equiv BA \land \\ E - F - F' \land FF' \equiv BC \land A'C' \equiv D'F' \end{array}$
InAngle P A B C	$P \widehat{\in} A B C$	the point P is inside the angle $\angle ABC$	$\begin{array}{l} A \neq B \land C \neq B \land P \neq B \land \exists X, A - X - C \land \\ (X = B \lor B - X \leftrightarrow P) \end{array}$

Coq	Notation	Explanation	Definition
LeA A B C D E F LtA A B C D E F GtA A B C D E F GeA A B C D E F Acute A B C Obtuse A B C SuppA A B C SumA A B C D E F G H I	A B C $\stackrel{<}{\cong}$ D E F A B C $\stackrel{<}{\cong}$ D E F	the angle $\angle ABC$ is smaller or equal than angle $\angle DEF$ the angle $\angle ABC$ is smaller than angle $\angle DEF$ the angle $\angle ABC$ is greater than angle $\angle DEF$ the angle $\angle ABC$ is greater than angle $\angle DEF$ $\angle ABC$ is an acute angle $\angle ABC$ is an obtuse angle the angles $\angle ABC$ and $\angle DEF$ are supplementary The sum of angles $\angle ABC$ and $\angle DEF$ is congruent to $\angle CHI$	$\exists P, P \in D E F \land A B C \cong D E P$ $A B C \leq D E F \land \neg A B C \cong D E F$ $D E F \leq A B C$ $\exists A', \exists B', \exists C', \boxtimes A' B' C' \land A B C \leq A' B' C'$ $\exists A', \exists B', \exists C', \boxtimes A' B' C' \land A' B' C' \leq A B C$ $A \neq B \land \exists A', A - B - A' \land D E F \cong C B A'$ $\exists J C B J \cong D E F \land \neg B_{\overrightarrow{AJ}} C \land C p A B C J \land$
SAMS A B C D E F		The sum of the angles $\angle ABC$ and $\angle DEF$ is smaller than the flat angle.	$A B J = G H I$ $A \neq B \land (OutEDF \lor \neg A - B - C) \land \exists J C B J \cong D E F \land$ $\neg B - J C \land \neg A - J B \land Cp A B C J$
TriSumA A B C D E F	$\mathcal{S}(\triangle ABC) \widehat{=} D E F$	The sum of the angles of the triangle ABC is congruent to the angle $\angle DEF$	$\exists G H I \qquad Sum A \qquad A B C B C A G H I \land \\ Sum A G H I C A B D E F$
isosceles A B C equilateral A B C equilateral_strict A B C		ABC is an isosceles triangle in $BABC$ is an equilateral triangle ABC is an equilateral triangle and the points are distinct and hence not collinear ABC is congruent to ABC	$AB \equiv BC$ $AB \equiv BC \land BC \equiv CA$ $equilateral ABC \land A \neq B$ $AB = A B \land AC = A C \land BC = B C $
CongA_3 A B C A' B' C'		ABC is congruent to ABC ABC is similar to $A'B'C'$	$AB = AB \land AC = AC \land BC = BC$ $ABC = A'B'C' \land BC A = B'C'A' \land CAB = C'A'B'$
is_orthocenter H A B C is_circumcenter G A B C is_gravity_center H A B C		H is the ortho-center of triangle ABC . G is the circum-center of triangle ABC . H is the gravity center of triangle ABC .	
ReflectL P' P A B Reflect P' P A B		P' is the image of P by reflection on line $ABP' is the image of P by reflection on line AB if A \neq Band P' is the image of P by the reflection on point A ifA = B$	$(\exists X \ X_{+}P_{+}P' \land \operatorname{Col} A B \ X) \land (AB \perp PP' \lor P = P') (A \neq B \land ReflectL P' P A B) \lor (A = B \land A_{+}P_{+}P')$
Perp_bisect P Q A B Orth_at X A B C U V		PQ is the perpendicular bisector of segment $ABABC \perp UV and X is the intersection of ABC and UV$	$\begin{aligned} ReflectLABPQ \land A \neq B \\ \neg \operatorname{Col} ABC \land U \neq V \land \land \operatorname{Cp} ABCX \land \operatorname{Col} UVX \land \\ (\forall PQ, \operatorname{Cp} ABCP \Rightarrow \operatorname{Col} UVQ \Rightarrow \ \ PXQ) \end{aligned}$
Orth A B C U V	$ABC \perp UV$	plane ABC is perpendicular to line UV	$\exists X, Orth_at X A B C U V$

Coq	Notation	Explanation	Definition
Parallelogram A B C D		ABCD is a parallelogram, this includes a flat case defined as diagonals intersect in their midpoint	$\begin{array}{c c} Parallelogram_strict A B A' B' & \lor \\ Parallelogram_flat A B A' B' & & \\ \end{array}$
Parallelogram_strict A B C D		ABCD is a parallelogram. The points are not collinear	$A_{\underline{\mu}} A' \wedge AB \parallel A'B' \wedge AB \equiv A'B'$
Parallelogram_flat A B C D		ABCD is a flat parallelogram	$\operatorname{Col}^{BB} A B A' \wedge \operatorname{Col} A B B' \wedge A B \equiv A' B' \wedge A B' \equiv A' B \wedge (A \neq A' \vee B \neq B')$
Saccheri A B C D		ABCD is a quadrilateral with two equal sides perpendicular to the base. In Euclidean geometry it is a rectangle.	$ \square B A D \land \square A D C \land AB \equiv CD \land A _ ___D $
Lambert A B C D		ABCD is a quadrilateral with three right angles. In hyper- bolic geometry the fourth angle is acute, in Euclidean geome- try it is a right angle.	$A \neq B \land B \neq C \land C \neq D \land A \neq D \land \square B A D \land \square A D C \land \square A B C$
Rectangle A B C D		ABCD is a rectangle	
Square A B C D		ABCD is a square	
Rhombus A B C D		ABCD is a rhombus	
Kite A B C D		ABCD is a kite	

nstruction	Coq
ree non collinear points	lower_dim_ex
o distinct points	<pre>two_distinct_points</pre>
point X on line AB such that B is on segment AX	<pre>point_construction_different A B</pre>
point different from A	another_point A
point on the half-line AB at a given distance CD from B	segment_construction A B C D
point on the half-line AB at a given distance CD from A	<pre>segment_construction_2 A B C D</pre>
point not on the line AB	not_col_exists A B
point on the line AB different from A and B	diff_coll_ex A B
other point on the line formed by three collinear points ABC	diff_col_ex3 A B C
point on the opposite side of A wrt. line PQ	19_10 P Q A
point at the intersection of two perpendicular lines	Definition of Perp
e foot of perpendicular to AB through P	18_18_existence A B P
point on the perpendicular to AB through A on the opposite side of C	18_21 A B C
e midpoint of segment AB	midpoint_existence A B
e symmetric of A wrt. I	symmetric_point_construction A I
e symmetric of X wrt. line AB	ex_sym A B X
o points on the parallel to line AB through P	parallel_existence A B P
point on the parallel to line AB through P	<pre>parallel_existence_spec A B P</pre>
e circumcenter of triangle ABC	exists_circumcenter A B C
e in-center of triangle ABC	incenter_exists A B C
e center of gravity of triangle ABC	<pre>is_gravity_center_exist_unique A B C</pre>