Coq/GeoCoq cheat sheets

Logic	Coq's syntax
false	False
true	True
$a=b$	$\mathrm{a}=\mathrm{b}$
$a \neq b$	a <> b
not A	$\sim \mathrm{A}$
A or B	A \backslash / B
A and B	$\mathrm{A} / \triangle \mathrm{B}$
A implies B	A \rightarrow B
A is equivalent to B	A <-> B
$f(x, y, z)$	(f x y z)
$\forall x y, P(x, y)$	forall ($\mathrm{x}: \mathrm{A}$) ($\mathrm{y}: \mathrm{B}$), P x y
$\exists x y, P(x, y)$	exists ($\mathrm{x}: \mathrm{A}$) ($\mathrm{y}: \mathrm{B}$), P x y

When the goal is \ldots	use tactic \ldots
$p / \underset{q}{ }$	split
$p \backslash / q$	left or right
$p \rightarrow q$	intro H
\sim	intro H
$p<->q$	split
forall x, p	intro x
exists x, p	exists t
an assumption	assumption
a definition	unfold

To use hypothesis H ... use	use tactic
$\mathrm{p} \backslash \mathrm{q}$ d dest	destruct H as [$\mathrm{H} 1 \mid \mathrm{H} 2$]
p ¢ q dest	destruct H as [H1 H2]
$\mathrm{p} \rightarrow \mathrm{q}$ appl	apply H
p <-> q appl	apply H
~p appl	apply H
False cont	contradiction
forall x, p appl	apply H or apply H in
exists x, p dest	destruct H as [x G]
To introduce a new hypothesis H... use tactic...	
assert (Hnew: stm).	
assert (Hnew:= proof).	
Adhoc Tactics for Geometry	
Add collinearity	assert_cols
Add betweeness	assert_bets
Add inequalities	assert_diffs
Deduce equalities	treat_equalities
Preudo-transitivity of Col	ColR
Assumption modulo permutations	nuta- finish
Assumption modulo permutations and pseudo-transitivity of	nuta- sfinish ity of
apply a lemma modulo permutation of hypotheses	ermu- perm_apply

Coq	Notation	Explanation	Definition		
Bet A B C	$A-B-C$	points A, B and C are collinear and B is between A and C , it can be the case the $A=B$ or $B=C$.			
Cong A B C D	$A B \equiv C D$	the segments $A B$ and $C D$ are congruent			
Col A B C	$\mathrm{Col} A B C$	points A, B and C are collinear	$A-B-C \vee B-A-C \vee A-C-B$		
Out O A B	$O_{九} A_{\mapsto}$ B	B belongs to the half line $O A$	$O \neq A \wedge O \neq B \wedge(O-A-B \vee O-B-A)$		
Midpoint M A B	$A+M+B$	M is the midpoint of segment $A B$	$A-M-B \wedge A M \equiv B M$		
TS A B P Q	$A \underset{P}{ }{ }^{Q}{ }^{\text {a }}$, ${ }^{\text {a }}$	P and Q are on different sides of line $A B$	$\neg \operatorname{Col} P A B \wedge \neg \operatorname{Col} Q A B \wedge \exists T, \operatorname{Col} T A B \wedge P-T-Q$		
OS A B X Y	$A_{{ }_{X}{ }^{\prime}{ }_{Y}} B$	X and Y are on the same side of line $A B$			
Coplanar A B C D	Cp $A B C D$	A, B, C and D belong to the same plane	$\exists X,(\operatorname{Col} A B X \wedge \operatorname{Col} C D X) \vee(\operatorname{Col} A C X \wedge \operatorname{Col} B D X) \vee$ $(\operatorname{Col} A D X \wedge \operatorname{Col} B C X)$		
Concyclic A B C D		A, B, C and D belong to the same circle	Coplanar $A B C D \wedge \exists O O A \equiv O B \wedge O A \equiv O C \wedge O A \equiv O D$		
Per A B C	$\triangle A B C$	the triangle $A B C$ is a right triangle in B	$\exists C^{\prime}, C+B+C^{\prime} \wedge A C \equiv A C^{\prime}$		
Perp_at P A B C D	$A B \underset{P}{\perp} C D$	$A B \perp C D$ and P is the intersection of $A B$ and $C D$	$A \neq B \wedge C \neq D \wedge \operatorname{Col} P A B \wedge \operatorname{Col} P C D \wedge$ $(\forall U V, \mathrm{Col} U A B \Rightarrow \mathrm{Col} V C D \Rightarrow \triangle U P V)$		
Perp A B C D	$A B \perp C D$	line $A B$ is perpendicular to line $C D$	$\exists P, A B \underset{P}{\perp} C D$		
Par_strict A B C D Y	$A B \\|_{s} C D$	line $A B$ is parallel to line $C D$ and $A B \neq C D$	$A \neq B \wedge C \neq D \wedge \mathrm{Cp} A B C D \wedge \neg \exists X, \mathrm{Col} X A B \wedge \operatorname{Col} X C D$		
Par A B C D	$A B \\| C D$	line $A B$ is parallel to line $C D$	$A B \\|_{s} C D \vee(A \neq B \wedge C \neq D \wedge \mathrm{Col} A C D \wedge \mathrm{Col} B C D)$		
Perp2 A B C D P	$A B \underset{P}{\Perp} C D$	the line $A B$ and $C D$ have a common perpendicular through P	$\exists X, \exists Y, \mathrm{Col} P X Y \wedge X Y \perp A B \wedge X Y \perp C D$		
Le A B C D	$A B \leq C D$	the length $A B$ is smaller or equal to length $C D$	$\exists E, C-Y-D \wedge A B \equiv C E$		
Lt A B C D	$A B<C D$	the length $A B$ is smaller to length $C D$	$A B \leq C D \wedge \neg A B \equiv C D$		
Ge A B C D	$A B \geq C D$	the length $A B$ is greater or equal to length $C D$	$C D \leq A B$		
Gt A B C D	$A B>C D$	the length $A B$ is greater than length $C D$	$C D<A B$		
CongA A B C D E F	$A B C \widehat{=} \mathrm{D} E \mathrm{~F}$	the angles $\angle A B C$ and $\angle D E F$ are congruent	$\begin{aligned} & A \neq B \wedge C \neq B \wedge D \neq E \wedge F \neq E \wedge \\ & \exists A^{\prime}, \exists C^{\prime}, \exists D^{\prime}, \exists F^{\prime}, B-A-A^{\prime} \wedge A A^{\prime} \equiv E D \wedge \\ & B-C-C^{\prime} \wedge C C^{\prime} \equiv E F \wedge E-D-D^{\prime} \wedge D D^{\prime} \equiv B A \wedge \\ & E-F-F^{\prime} \wedge F F^{\prime} \equiv B C \wedge A^{\prime} C^{\prime} \equiv D^{\prime} F^{\prime} \end{aligned}$		
InAngle P A B C	$P \widehat{\in} A B C$	the point P is inside the angle $\angle A B C$	$\begin{aligned} & A \neq B \wedge C \neq B \wedge P \neq B \wedge \exists X, A-X-C \wedge \\ & (X=B \vee B \leftrightarrows X \hookrightarrow P) \end{aligned}$		

Coq	Notation	Explanation	Definition
LeA A B C D E F	$A B C \widehat{\leq} D E F$	the angle $\angle A B C$ is smaller or equal than angle $\angle D E F$	$\exists P, P \widehat{\in} D E F \wedge A B C \widehat{=} D E P$
LtA A B C D E F	$A B C \widehat{<} D E F$	the angle $\angle A B C$ is smaller than angle $\angle D E F$	$A B C \widehat{\leq} D E F \wedge \neg A B C \widehat{=} D E F$
GtA A B C D EF	$A B C \widehat{<} D E F$	the angle $\angle A B C$ is greater than angle $\angle D E F$	$D E F \overline{<} A B C$
GeA A B C D E F	$A B C \widehat{\leq} D E F$	the angle $\angle A B C$ is greater than angle $\angle D E F$	$D E F \widehat{\leq} A B C$
Acute A B C		$\angle A B C$ is an acute angle	$\exists A^{\prime}, \exists B^{\prime}, \exists C^{\prime}, \triangle A^{\prime} B^{\prime} C^{\prime} \wedge A B C \widehat{<} A^{\prime} B^{\prime} C^{\prime}$
Obtuse A B C		$\angle A B C$ is an obtuse angle	$\exists A^{\prime}, \exists B^{\prime}, \exists C^{\prime}, \triangle A^{\prime} B^{\prime} C^{\prime} \wedge A^{\prime} B^{\prime} C^{\prime} \widehat{<} A B C$
SuppA A B C		the angles $\angle A B C$ and $\angle D E F$ are supplementary	$A \neq B \wedge \exists A^{\prime}, A-B-A^{\prime} \wedge D E F \hat{=} C B A^{\prime}$
SumA A B C D EFGHI	$A B C \widehat{+} E F \hat{=} G H I$	The sum of angles $\angle A B C$ and $\angle D E F$ is congruent to $\angle G H I$	$\begin{aligned} & \exists J \quad C B J \widehat{=} D E F \wedge \neg B \underset{A J}{ } C \wedge \operatorname{Cp} A B C J \wedge \\ & A B J \widehat{=} G H I \end{aligned}$
SAMS A B C D E F		The sum of the angles $\angle A B C$ and $\angle D E F$ is smaller than the flat angle.	$\begin{aligned} & A \neq B \wedge(O u t E D F \vee \neg A-B-C) \wedge \exists J C B J \widehat{=} D E F \wedge \\ & \neg B-\neg \subset \neg \neg A \neg B \wedge \mathrm{Cp} A B C J \end{aligned}$
TriSumA A B C D E F	$\mathcal{S}(\triangle A B C) \widehat{=} D E F$	The sum of the angles of the triangle $A B C$ is congruent to the angle $\angle D E F$	$\exists G H I$ $\stackrel{A J}{S} u m A$ $A B C B C A G H I$ SumA \wedge
isosceles A B C		$A B C$ is an isosceles triangle in B	$A B \equiv B C$
equilateral A B C		$A B C$ is an equilateral triangle	$A B \equiv B C \wedge B C \equiv C A$
equilateral_strict A B C		$A B C$ is an equilateral triangle and the points are distinct and hence not collinear	equilateral $A B C \wedge A \neq B$
Cong_3 A B C A' $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$		$A B C$ is congruent to $A^{\prime} B^{\prime} C^{\prime}$	$A B \equiv A^{\prime} B^{\prime} \wedge A C \equiv A^{\prime} C^{\prime} \wedge B C \equiv B^{\prime} C^{\prime}$
CongA_3 A B C A' B' C'		$A B C$ is similar to $A^{\prime} B^{\prime} C^{\prime}$	$A B C \widehat{=} A^{\prime} B^{\prime} C^{\prime} \wedge B C A \widehat{=} B^{\prime} C^{\prime} A^{\prime} \wedge C A B \widehat{=} C^{\prime} A^{\prime} B^{\prime}$
is_orthocenter H A B C		H is the ortho-center of triangle $A B C$.	
is_circumcenter G A B C		G is the circum-center of triangle $A B C$.	
is_gravity_center H A B C		H is the gravity center of triangle $A B C$.	
ReflectL P, P A B		P^{\prime} is the image of P by reflection on line $A B$	$\left(\exists X X_{+} P_{+} P^{\prime} \wedge \operatorname{Col} A B X\right) \wedge\left(A B \perp P P^{\prime} \vee P=P^{\prime}\right)$
Reflect P' P A B		P^{\prime} is the image of P by reflection on line $A B$ if $A \neq B$ and P^{\prime} is the image of P by the reflection on point A if $A=B$	$\left(A \neq B \wedge\right.$ Reflect $\left.L P^{\prime} P A B\right) \vee\left(A=B \wedge A_{+} P_{+} P^{\prime}\right)$
Perp_bisect P Q A B		$P Q$ is the perpendicular bisector of segment $A B$	ReflectL $A B P Q \wedge A \neq B$
Orth_at X A B C U V		$A B C \perp U V$ and X is the intersection of $A B C$ and $U V$	$\neg \operatorname{Col} A B C \wedge U \neq V \wedge \wedge \operatorname{Cp} A B C X \wedge \operatorname{Col} U V X \wedge$ $(\forall P Q, \operatorname{Cp} A B C P \Rightarrow \operatorname{Col} U V Q \Rightarrow \triangle P X Q)$
Orth A B C U V	$A B C \perp U V$	plane $A B C$ is perpendicular to line $U V$	$\exists X$, Orth_at X A B C U V

Coq	Notation	Explanation	Definition	
Parallelogram A B C D		$A B C D$ is a parallelogram, this includes a flat case defined as diagonals intersect in their midpoint	Parallelogram_strict $A B A^{\prime} B^{\prime}$ Parallelogram_flat $A B A^{\prime} B^{\prime}$	
Parallelogram_strict A B C D		$A B C D$ is a parallelogram. The points are not collinear	$A \underset{B B^{\prime}}{ } A^{\prime} \wedge A B \\| A^{\prime} B^{\prime} \wedge A B \equiv A^{\prime} B^{\prime}$	
Parallelogram_flat A B C D		$A B C D$ is a flat parallelogram	$\operatorname{Col} A B A^{\prime} \wedge \operatorname{Col} A B B^{\prime} \wedge A B \equiv A^{\prime} B^{\prime} \wedge A B^{\prime} \equiv A^{\prime} B \wedge(A \neq$ $\left.A^{\prime} \vee B \neq B^{\prime}\right)$	
Saccheri A B C D		$A B C D$ is a quadrilateral with two equal sides perpendicular to the base. In Euclidean geometry it is a rectangle.	$\triangle B A D \wedge \triangle A D C \wedge A B \equiv C D \wedge A \widetilde{B C C} D$	
Lambert A B C D		$A B C D$ is a quadrilateral with three right angles. In hyperbolic geometry the fourth angle is acute, in Euclidean geometry it is a right angle.	$A \neq B \wedge B \neq C \wedge C \neq D \wedge A \neq D \wedge \triangle B A D \wedge \triangle A D C \wedge \triangle A B C$	
Rectangle A B C D		$A B C D$ is a rectangle		
Square A B C D		$A B C D$ is a square		
Rhombus A B C D		$A B C D$ is a rhombus		
Kite A B C D		$A B C D$ is a kite		

Construction	Coq
three non collinear points	lower_dim_ex
two distinct points	two_distinct_points
a point X on line $A B$ such that B is on segment $A X$	point_construction_different A B
a point different from A	another_point A
a point on the half-line AB at a given distance CD from B	segment_construction A B C D
a point on the half-line AB at a given distance CD from A	segment_construction_2 A B C D
a point not on the line AB	not_col_exists A B
a point on the line AB different from A and B	diff_coll_ex A B
another point on the line formed by three collinear points ABC	diff_col_ex3 A B C
a point on the opposite side of A wrt. line PQ	19_10 P Q A
a point at the intersection of two perpendicular lines	Definition of Perp
the foot of perpendicular to AB through P	18_18_existence A B P
a point on the perpendicular to AB through A on the opposite side of C	18_21 A B C
the midpoint of segment AB	midpoint_existence A B
the symmetric of A wrt. I	symmetric_point_construction A I
the symmetric of X wrt. line AB	ex_sym A B X
two points on the parallel to line AB through P	parallel_existence A B P
a point on the parallel to line AB through P	parallel_existence_spec A B P
the circumcenter of triangle ABC	exists_circumcenter A B C
the in-center of triangle ABC	incenter_exists A B C
the center of gravity of triangle ABC	is_gravity_center_exist_unique A B C
the projection of P on line AB in the direction XY	project_existence P A B X Y

