Euclid's theorems through the Area Method

ADG 2023, September 20, 2023, Belgrade, Serbia

Anna Petiurenko

Pedagogical University of Krakow

Problem and Motivation

Dual nature of the theory of similar figures

Ancient mathematics could process line segments, triangles, rectangles, and other geometric magnitudes and instead of real numbers and fractions employed proportions.

$$
\frac{\triangle}{\triangle_{1}}=\frac{t r}{t r_{1}}=\frac{s q}{s q_{1}}=\frac{\square}{\square_{1}}
$$

where $=$ stands for proportion, and $\triangle, \triangle_{1}, \square, \square_{1}$ are geometric figures

In contemporary school mathematics, fractions mimic proportions and are subject to operations within the arithmetic of real numbers.

$$
\frac{a}{b}=\frac{S_{A B C}}{S_{A_{1} B_{1} C_{1}}}=\frac{S_{K L M N}}{S_{K_{1} L_{1} M_{1} N_{1}}}=\frac{c}{d}
$$

where $a, b, c, d \in \mathbb{R}$, and $S_{A B C}$, etc. stand for areas of figures

The intercept (Thales) theorem

Figure 1: Elements, proposition VI. 2

$$
\begin{gathered}
T 1=\triangle(C D E), T 2=\triangle(B D E), T 3=\triangle(A D E) \\
\frac{T 2}{T 3}=\frac{d}{c}, \frac{T 1}{T 3}=\frac{b}{a}, \\
D E \| B C \text { then } T 2=T 1(\text { Prop.I. } 38), \\
T 2=T 1 \text { then } \frac{T 1}{T 3}=\frac{T 2}{T 3}(\text { Prop.V. }), \\
\frac{T 2}{T 3}=\frac{d}{c}=\frac{T 1}{T 3}=\frac{b}{a}=\frac{T 1}{T 3}
\end{gathered}
$$

Thales' Theorem (20th century foundations of geometry)

Segment arithmetic

Real numbers

State of the Art

Two ways of interpreting the Elements

> The first originates in Hilbert's Grundlagen der Geometrie. It consists of a reconstruction of the logical structure of the treaty. Euclid's propositions derive from a system containing original axioms and new ones.

The second trend respects that Euclid refers to diagrams in many proofs. This way of interpreting elevates diagrams in mathematical argumentation.

The theory of proportions developed by Hilbert, and later by Hartshorne, can not reconstruct Euclid's theorems concerning proportions of figures, e.g., VI.1, 16, 19, 20, 31.In turn, authors who emphasize the role of diagrams cannot explain the comparison of figures in terms of greaterlesser when one figure does not contain the other.

Contribution and Main Idea

Euclid's proposition VI. 1

We have a proportion $a: b:: c: d$.
 In the theorem VI. $1 \mathrm{a}, \mathrm{b}$ are triangles, and c, d segments. We formalize it as follows
$\triangle A B C: \triangle A D C:: B C: D C$.

Proof:
$B C=G B=H G$ and
$C D=D K=K L$
$\triangle A H C=3 \triangle A B C$, and
$\triangle A L C=3 \triangle A D C$
If $3 \triangle A B C \gtreqless 3 \triangle A D C$, then
$3 B C \gtreqless 3 D C$.

Euclid's proposition VI. 1

Euclid's proof is cumbersome, to say the least; it applies non-defined concepts of the addition of triangles encoded in the notion of multiple and requires comparing triangles in terms of greater-lesser. The accompanying diagram is to represent relations $\triangle A H C=3 \triangle A B C$, and
$\triangle A L C=3 \triangle A D C$. Somehow, we must decide that $\triangle A H C<\triangle A L C$ whenever $H C<L C$.

In our reconstruction of Book VI, we eliminate deliberations of this kind by accepting it as an axiom.

The primitive concepts of the Area Method

The primitive concepts of the system of axioms of the Area Method are:

- the point $(A, B, C \ldots)$,
- the length of a directed segment $(\overline{A B})$
- the signed area of a triangle $\left(S_{A B C}\right)$, which are elements of an ordered field.
$\overline{A B}$ and $S_{A B C}$ can be positive, negative, or zero and processed in an ordered arithmetic field. These concepts allow us to interpret segments, triangles, and polygons without reference to real numbers.

Basic definitions of Area Method

Definition (1)

Points A, B, C are collinear iff $S_{A B C}=0$.
Definition (2)
Two segments $A D$ and $B C$, where $A \neq D$ and $B \neq C$, are parallel, iff $S_{A B C}=S_{D B C}$. We adopt the standard symbol $A D \| B C$ for this relation.

Figure 3: Definition of parallel line segments

Some axioms of the Area Method

A1. $\overline{A B}=0$ if and only if A and B are identical.
A2. $S_{A B C}=S_{C A B}$.
A3. $S_{A B C}=-S_{B A C}$.
A5. There are points A, B and C such that $S_{A B C} \neq 0$ (not all points are collinear).
A10. If $S_{P A C} \neq 0$ and $S_{A B C}=0$, then $\frac{\overline{A B}}{\overline{A C}}=\frac{S_{P A B}}{S_{P A C}}$ (Euclid's proposition VI.1).

The proof of Thales' theorem in the Area Method

$$
\begin{array}{cc}
\text { Euclid's proof } & \text { Area method proof } \\
D E \| B C & \rightarrow \triangle D E B=\triangle D E C \\
\triangle D E B=\triangle D E C & \rightarrow \triangle D E B: \triangle D A E: \triangle D E C: \triangle D A E
\end{array} \quad S_{D E B}=S_{D E C} \rightarrow \frac{S_{D E B}}{S_{D A E}}=\frac{S_{D E C}}{S_{D A E}}
$$

Area method proof

Elimination lemmas

Elimination lemmas specify this procedure. Given that, an automated proof proceeds as follows:

1. The thesis of a theorem is translated into an expression in the Area Method language.
2. Given some starting points, new points are introduced, one by one, through the allowed constructions (construction stage).
3. Each point introduced in the construction stage is eliminated based on elimination lemmas, but in reverse order, i.e., the last constructed is the first in the elimination process, etc. (elimination stage).
4. The process reaches identity $1=1$ or $0=0$ and stops.

Allowed constructions in GCLC

midpoint translate point perp intersect foot towards online parallel

Brief introduction to the used terminology

Table 1: Geometry quantities in GCLC

ratio of directed segments	$\overline{\overline{P Q}}$	sratio P Q A B
signed area (arity 3)	$S_{A B C}$	signed_area3 A B C

Table 2: Statements for the basic sorts of conjectures in GCLC

points A and B are identical	identical A B
points A, B, C are collinear	collinear A B C
$A B$ is perpendicular to $C D$	perpendicular A B C D
$A B$ is parallel to $C D$	parallel A B C D
O is the midpoint of $A B$	midpoint A A B
$A B$ has the same length as $C D$	same_length A B C D

Theorem VI.2, construction at GCLC

Figure 4:
Theorem VI.2, construction at GCLC
Construction steps:

point A 2030
point B 6030
point C 4050
online D A B
line bc B C
line ca C A
arallel de D bc
ntersec E ca

Theorem thesis in terms of automatic proof:
prove\{ equal\{ sratio $B D D A\}\{$ sratio CEEA $\}\}\}$
In ordinary mathematical language, it can be written like this:

$$
\frac{\overline{B D}}{\overline{D A}}=\frac{\overline{C E}}{\overline{E A}}
$$

The fragment of the proof generated by the GCLC

$$
\begin{aligned}
& \frac{\overrightarrow{B D}}{\overrightarrow{D A}}=\frac{\overrightarrow{C E}}{\overrightarrow{E A}} \\
& \frac{\overrightarrow{B D}}{\overrightarrow{D A}}=\left(-1 \cdot \frac{\overrightarrow{C E}}{\overrightarrow{A E}}\right) \\
& \frac{\overrightarrow{B D}}{\overrightarrow{D A}}=\left(-1 \cdot \frac{S_{C D P_{d e}^{1}}}{S_{A D P_{d e}^{1}}^{1}}\right) \\
& \frac{\overrightarrow{B D}}{\overrightarrow{D A}}=\frac{\left(-1 \cdot S_{C D P_{d e}^{1}}\right)}{{ }^{S} A D P_{d e}^{1}} \\
& \text { by the statement } \\
& \text { by geometric simplifications } \\
& \text { by Lemma } 8 \text { (point } E \text { eliminated) } \\
& \text { by algebraic simplifications } \\
& \left(r_{0}+\left(-1 \cdot\left(r_{0} \cdot r_{0}\right)\right)\right)=\left(\frac{\left(0+r_{0}\right)}{\frac{\overrightarrow{A B}}{\overrightarrow{A B}}}+\left(-1 \cdot\left(\frac{\overrightarrow{A D}}{\overrightarrow{A B}} \cdot r_{0}\right)\right)\right) \\
& r_{0}=\frac{\overrightarrow{A D}}{\overrightarrow{A B}} \\
& r_{0}=\frac{\left(\begin{array}{l}
\overrightarrow{A A} \\
\overrightarrow{A B} \\
\overrightarrow{A B}
\end{array}\right)}{\overrightarrow{\overrightarrow{A B}}} \\
& r_{0}=\frac{\left(0+r_{0}\right)}{\overrightarrow{\overrightarrow{A B}}} \\
& 0=0 \\
& \text { by geometric simplifications } \\
& \text { by algebraic simplifications } \\
& \text { by Lemma } 39 \text { (point } D \text { eliminated) } \\
& \text { by geometric simplifications } \\
& \text { by algebraic simplifications } 0=0
\end{aligned}
$$

Proof the 3rd theorem from Book VI of the Elements

Theorem (VI.3)

Let $A B C$ be a triangle. Let the angle $B A C$ be cut in half by the straight line $A D$. I say that as $B D$ is to $C D$, so $B A$ is to $A C$.

Figure 5: Construction of angle bisector

Constructing a bisector in GCLC

New task: constructing a bisector using legal commands in GCLC-prover.

We cannot construct a bisector in a defined angle, but we can construct a "some" angle with the bisector.

Figure 6: Theorem VI.3, construction
at GCLC

$$
\begin{aligned}
& \text { point A } 4030 \\
& \text { point B } 7030 \\
& \text { point K } 5560 \\
& \text { line kb K B } \\
& \text { foot H A kb } \\
& \text { translate O B H H } \\
& \text { online C O A } \\
& \text { line ah A H } \\
& \text { line bc B C } \\
& \text { intersec D ah bc } \\
& \text { line ab A B } \\
& \text { parallel cd C ab } \\
& \text { line ac A C } \\
& \text { parallel bf B ac } \\
& \text { intersec E ah cd } \\
& \text { intersec F bf cd }
\end{aligned}
$$

Constructing a bisector in GCLC

Figure 7: Theorem VI.3, construction at GCLC

Let us have any points A, B, and K. Construct a perpendicular $A H$ from point A to the segment $B K$. Then, we construct a point O symmetrical to B with respect to H (the construction command translate). Triangle $B A O$ is isosceles and $A H$ is a bisector of $\angle A$. Choose any point C on line $A O$.
The point D is the intersection of $A H$ and $B C$, and $A D$ is the bisector of angle $C A B$. The ratio command can only be used on parallel segments. In the case of $A B$ and $A C$, there are no parallel segments. We make additional constructs: $A B F C$ is a parallelogram $\Rightarrow A B=C F$, triangle $A C E$ is isosceles $\Rightarrow C A=C E$.

Finally, we can formulate the thesis in terms of the GCLC:
prove\{ equal \{ sratio B D C $\}$ \{ sratio FCCE\}\}

Case for bisector of outside angle

Above, we have discussed the case where $A D$ is the bisector of an inside angle of the triangle, but in GCLC [7], we immediately get the theorem for the case of the bisector of the triangle's outside angle, too (see Fig. 8).

Figure 8: Theorem VI. 3 [6, p. 158], construction at GCLC [7] (case for bisector of outside angle)

Conclusion

Conclusion

- The Area Method and Prover GCLC enable automatic proofs of propositions from Book VI of the Elements.
- The proposed method enables the reconstruction of Euclid's theses and the original proof technique, i.e., the proportion theory.
- Just as constructions are the crux of Euclid's proofs, understanding automatic proofs reduces to elimination lemmas.
- These lemmas refer to Euclid's technique of constructing points while adding a new aspect to that process, namely the elimination.
- Since mechanical proofs are crucial to modern mathematics, we seek to introduce this method into the teaching process.
- Algorithms used in Euclidean geometry, i.e., the Area Method, are well suited for teaching. In this way, ancient mathematics supported by new technology will introduce students to a brand new mathematical idea, namely automatic proof.

寝
Błaszczyk，P．，Petiurenko，A．：Commentary to Book I of the Elements．AUPC 13，43－93，2021．doi10．24917／20809751．13．7
围 Błaszczyk，P．：Descartes transformation of Greek notion of proportionality．In：Sriraman，B．（eds．）Handbook of the History and Philosophy of Mathematical Practice．Springer，Cham（2021）
围 Błaszczyk，P．，Petiurenko，A．：Euclid＇s proportion revised．AUPC 11， pp．37－61，（2019）doi10．24917／20809751．11．3
围 Borsuk，K．，Szmielew，W．：Foundations of Geometry，North－Holland， Amsterdam（1960）
Rhou，S．，Gao，X．，Zhang，J．：Machine Proofs in Geometry，World Scientific，Singapore（1994）

References ii

（R．Fitzpatrick，R．：Euclid＇s Elements of Geometry translated by R． Fiztpatrick，（2007）；
http：／／farside．ph．utexas．edu／Books／Euclid／Elements．pdf
囯 GCLC．http：／／poincare．matf．bg．ac．rs／～janicic／／gclc／
目 GCLC manual http：
／／poincare．matf．bg．ac．rs／～janicic／／gclc／gclc－man．pdf
R Hartshorne，R．：Teaching Geometry According to Euclid．Notices of the American Mathematical Society 47，pp．460－465，（2000）
图 Hilbert D．：Grundlagen der Geometrie．11．Auflage．Stuttgart（1972）
囯 Janičič，P．，Narboux，J．，Quaresma，P．：The area method：a Recapitulation，Journal of Automated Reasoning，48（4），pp． 489－532．Springer Verlag（2012）

References iif

速
Millman, R., Parker, G.: Geometry A Metric Approach with Models, Springer, Berlin (1991)
Retiurenko, A.: Foundations of Geometry for Secondary Schools and Prospective Teachers. PhD thesis. Pedagogical University of Cracow, Kraków (2022)
目 Schwabhäuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der Geometrie, Springer, Berlin (1983)

