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Problem and Motivation



Dual nature of the theory of similar figures

Ancient mathematics could process

line segments, triangles, rectangles,

and other geometric magnitudes

and instead of real numbers and

fractions employed proportions.

△
△1

=
tr

tr1
=

sq

sq1
=

□
□1

where = stands for proportion, and

△,△1,□,□1 are geometric figures

In contemporary school

mathematics, fractions mimic

proportions and are subject to

operations within the arithmetic of

real numbers.
a

b
=

SABC
SA1B1C1

=
SKLMN

SK1L1M1N1

=
c

d

where a, b, c , d ∈ R, and SABC ,

etc. stand for areas of figures
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The intercept (Thales) theorem
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Figure 1: Elements, proposition VI.2

T1 = △(CDE), T2 = △(BDE),T3 = △(ADE)
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DE∥BC then T2 = T1 (Prop.I .38),

T2 = T1 then
T1

T3
=

T2

T3
(Prop.V .7),
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Thales’ Theorem (20th century foundations of geometry)
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State of the Art



Two ways of interpreting the Elements

The first originates in Hilbert’s

Grundlagen der Geometrie. It con-

sists of a reconstruction of the log-

ical structure of the treaty. Eu-

clid’s propositions derive from a

system containing original axioms

and new ones.

The second trend respects that

Euclid refers to diagrams in many

proofs. This way of interpreting

elevates diagrams in mathematical

argumentation.

The theory of proportions developed by Hilbert, and later by Hartshorne,

can not reconstruct Euclid’s theorems concerning proportions of figures,

e.g., VI.1, 16, 19, 20, 31.In turn, authors who emphasize the role of

diagrams cannot explain the comparison of figures in terms of greater-

lesser when one figure does not contain the other.
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Contribution and Main Idea



Euclid’s proposition VI.1

Figure 2: Elements, proposition VI.1

“Let ABC and ACD be triangles,

[...] of the same height AC. I say

that as base BC is to base CD, so

triangle ABC (is) to triangle ACD”.

We have a proportion a : b :: c : d .

In the theorem VI.1 a, b are

triangles, and c, d segments. We

formalize it as follows

△ABC : △ADC :: BC : DC .

Proof:

BC = GB = HG and

CD = DK = KL

△AHC = 3△ABC , and

△ALC = 3△ADC

If 3△ABC ⪌ 3△ADC , then

3BC ⪌ 3DC . 5



Euclid’s proposition VI.1

Euclid’s proof is cumbersome, to say the least; it applies

non-defined concepts of the addition of triangles encoded in

the notion of multiple and requires comparing triangles in

terms of greater-lesser. The accompanying diagram is to

represent relations △AHC = 3△ABC , and

△ALC = 3△ADC . Somehow, we must decide that

△AHC < △ALC whenever HC < LC .

In our reconstruction of Book VI, we eliminate deliberations of

this kind by accepting it as an axiom.
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The primitive concepts of the Area Method

The primitive concepts of the system of axioms of the Area

Method are:

� the point (A,B ,C ...),

� the length of a directed segment (AB)

� the signed area of a triangle (SABC ), which are elements of

an ordered field.

AB and SABC can be positive, negative, or zero and processed

in an ordered arithmetic field. These concepts allow us to

interpret segments, triangles, and polygons without reference

to real numbers.
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Basic definitions of Area Method

Definition (1)
Points A,B,C are collinear iff SABC = 0.

Definition (2)
Two segments AD and BC , where A ̸= D and B ̸= C , are parallel, iff

SABC = SDBC . We adopt the standard symbol AD ∥ BC for this relation.

Figure 3: Definition of parallel line segments
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Some axioms of the Area Method

A1. AB = 0 if and only if A and B are identical.

A2. SABC = SCAB .

A3. SABC = −SBAC .

A5. There are points A, B and C such that SABC ̸= 0 (not all points are

collinear).

A10. If SPAC ̸= 0 and SABC = 0, then AB
AC

= SPAB

SPAC
(Euclid’s proposition

VI.1).
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The proof of Thales’ theorem in the Area Method

Euclid’s proof

DE∥BC → △DEB = △DEC

△DEB = △DEC→△DEB : △DAE :: △DEC : △DAE

E⊥AB → △DEB : △DAE :: BD : DA

D⊥AC → △DEC : △DAE :: CE : EA

→ BD : DA :: CE : EA

note: E⊥AB represents the the stipulation “having

the same height” namely, the straight line

drawn from E perpendicular to AB.

Area method proof

DE∥BC → SDEB = SDEC

SDEB = SDEC→
SDEB

SDAE
=

SDEC

SDAE

SADB = 0 →
SEBD

SEDA
=

BD

DA

SAEC = 0 →
SDCE

SDEA
=

CE

EA

→
BD

DA
=

CE

EA
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Elimination lemmas

Elimination lemmas specify this procedure. Given that, an automated

proof proceeds as follows:

1. The thesis of a theorem is translated into an expression in the Area

Method language.

2. Given some starting points, new points are introduced, one by one,

through the allowed constructions (construction stage).

3. Each point introduced in the construction stage is eliminated based

on elimination lemmas, but in reverse order, i.e., the last constructed

is the first in the elimination process, etc. (elimination stage).

4. The process reaches identity 1 = 1 or 0 = 0 and stops.
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Allowed constructions in GCLC
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Brief introduction to the used terminology

Table 1: Geometry quantities in GCLC

ratio of directed segments
PQ

AB
sratio P Q A B

signed area (arity 3) SABC signed_area3 A B C

Table 2: Statements for the basic sorts of conjectures in GCLC

points A and B are identical identical A B

points A, B, C are collinear collinear A B C

AB is perpendicular to CD perpendicular A B C D

AB is parallel to CD parallel A B C D

O is the midpoint of AB midpoint O A B

AB has the same length as CD same_length A B C D
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Theorem VI.2, construction at GCLC

Figure 4:

Theorem VI.2, construction at GCLC

Construction steps:

p o i n t A 20 30

p o i n t B 60 30

p o i n t C 40 50

o n l i n e D A B

l i n e bc B C

l i n e ca C A

p a r a l l e l de D bc

i n t e r s e c E ca de

Theorem thesis in terms of automatic proof:

p r o v e { e q u a l { s r a t i o B D D A }{ s r a t i o C E E A }}}

In ordinary mathematical language, it can be written like this:

BD

DA
=

CE

EA
.
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The fragment of the proof generated by the GCLC

−→
BD
−→
DA

=
−→
CE
−→
EA

by the statement

−→
BD
−→
DA

=
(
−1 ·

−→
CE
−→
AE

)
by geometric simplifications

−→
BD
−→
DA

=

(
−1 ·

S
CDP1

de
S
ADP1

de

)
by Lemma 8 (point E eliminated)

−→
BD
−→
DA

=

(
−1·S

CDP1
de

)
S
ADP1

de

by algebraic simplifications

...

(r0 + (−1 · (r0 · r0)))=

 (0+r0)
−→
AB−→
AB

+
(
−1 ·

(−→
AD
−→
AB

· r0
)) by geometric simplifications

r0=
−→
AD
−→
AB

by algebraic simplifications

r0=

(−→
AA−→
AB

+r0

)
−→
AB−→
AB

by Lemma 39 (point D eliminated)

r0=
(0+r0)

−→
AB−→
AB

by geometric simplifications

0=0 by algebraic simplifications 0=0
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Proof the 3rd theorem from Book VI of the Elements

Theorem (VI.3)

Let ABC be a triangle. Let the angle BAC be cut in half by

the straight line AD. I say that as BD is to CD, so BA is to

AC .

Figure 5: Construction of angle bisector
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Constructing a bisector in GCLC

New task: constructing a bisector

using legal commands in

GCLC-prover.

We cannot construct a bisector in

a defined angle, but we can

construct a “some” angle with the

bisector.

Figure 6: Theorem VI.3, construction

at GCLC

po i n t A 40 30

po i n t B 70 30

po i n t K 55 60

l i n e kb K B

f oo t H A kb

t r a n s l a t e O B H H

on l i n e C O A

l i n e ah A H

l i n e bc B C

i n t e r s e c D ah bc

l i n e ab A B

p a r a l l e l cd C ab

l i n e ac A C

p a r a l l e l b f B ac

i n t e r s e c E ah cd

i n t e r s e c F b f cd
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Constructing a bisector in GCLC

Figure 7: Theorem VI.3, construction

at GCLC

Let us have any points A, B, and

K . Construct a perpendicular AH

from point A to the segment BK .

Then, we construct a point O

symmetrical to B with respect to

H (the construction command

translate). Triangle BAO is

isosceles and AH is a bisector of ∠A.

Choose any point C on line AO.

The point D is the intersection of AH and BC , and AD is the bisector of

angle CAB. The ratio command can only be used on parallel segments.

In the case of AB and AC , there are no parallel segments. We make

additional constructs: ABFC is a parallelogram ⇒ AB = CF , triangle

ACE is isosceles ⇒ CA = CE .

Finally, we can formulate the thesis in terms of the GCLC:

p r o v e { e q u a l { s r a t i o B D C D } { s r a t i o F C C E}}
18



Case for bisector of outside angle

Above, we have discussed the case where AD is the bisector of an inside

angle of the triangle, but in GCLC [7], we immediately get the theorem

for the case of the bisector of the triangle’s outside angle, too (see Fig.

8).

Figure 8: Theorem VI.3 [6, p. 158], construction at GCLC [7] (case for

bisector of outside angle)
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Conclusion



Conclusion

� The Area Method and Prover GCLC enable automatic proofs of

propositions from Book VI of the Elements.

� The proposed method enables the reconstruction of Euclid’s theses

and the original proof technique, i.e., the proportion theory.

� Just as constructions are the crux of Euclid’s proofs, understanding

automatic proofs reduces to elimination lemmas.

� These lemmas refer to Euclid’s technique of constructing points

while adding a new aspect to that process, namely the elimination.

� Since mechanical proofs are crucial to modern mathematics, we seek

to introduce this method into the teaching process.

� Algorithms used in Euclidean geometry, i.e., the Area Method, are

well suited for teaching. In this way, ancient mathematics supported

by new technology will introduce students to a brand new

mathematical idea, namely automatic proof.
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