Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Milan Banković¹

¹Faculty of Mathematics, University of Belgrade, Serbia

September 21, 2023. ADG 2023, Belgrade, Serbia

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Introduction

- 2 Constraint Solving
- 3 Model Description

4 Evaluation



Introduction

Introduction

About construction problems

One of the oldest kinds of problems in geometry

 Given some elements of a figure, find a sequence of steps to construct the remaining elements

- Tools available: a ruler (straightedge) and a compass
- Solving by hand interesting to geometricians
- Automated solving a challenge to computer scientists

Introduction

Introduction

Two approaches to automated solving

- Implementing a custom search algorithm in some programming language
 - required geometric knowledge must be compiled into it
 - might require a lot of effort
- Using existing artificial intelligence tools that are good in search in general
 - we may focus on modeling the geometric knowledge, and leave the search to the tool
 - we can search for best solutions (e.g. shortest), using tools that support optimization

- Introduction

Introduction

What are we trying to do?

- Automated solving using off-the-shelf finite domain constraint solvers
 - great in solving search and optimization problems
- Modeling based on automated planning approach
 - the solution is viewed as a sequence of actions producing a state satisfying a given goal
- Evaluate the approach on 74 solvable problems from Wernick's set
 - constructing triangles from three given points
- Compare the approach with state-of-the-art tools
 - ArgoTriCS¹ dedicated triangle construction solver

¹Vesna Marinković. ArgoTriCS – automated triangle construction solver. Journal of Experimental & Theoretical Artificial Intelligence. *2*017. → (=) =) ⊃ < ? Constraint Solving

- 2 Constraint Solving
- 3 Model Description

4 Evaluation

└─ Constraint Solving

Constraint Solving

Constraint Satisfaction Problem (CSP)

A Constraint satisfaction problem (CSP) consists of:

- a finite set of variables {x₁,..., x_n} taking values from their finite domains (denoted by D(x_i))
- a finite set of constraints {*C*₁, *C*₂,..., *C_m*} relations over subsets of the problem's variables

A solution of the CSP is an assignment $x_1 = d_1, \ldots, x_n = d_n$ such that $d_i \in D(x_i)$ and all the constraints are satisfied.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Constraint Solving

Constraint Solving

Constrained Optimization Problem (COP)

In addition, we have a function $f : D(x_1) \times \ldots \times D(x_n) \to \mathbb{R}$, and we are looking for a solution that minimizes or maximizes f.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Constraint Solving

Constraint Solving

Solving CSPs and COPs

- CSPs and COPs are NP-hard in general
- Solved by combination of search and constraint propagation
- Constraint solvers tools for solving CSPs and COPs
- Constraint modeling: the task of representing the real-world problem as a CSP or a COP

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

MiniZinc – a modeling language of our choice

└─ Model Description

- 2 Constraint Solving
- 3 Model Description
- 4 Evaluation

Model Description

Model Description

Automated planning

For modeling, we use the approach based on automated planning:

state is represented by a set of variables

initial state given in advance

a finite set of operators (or actions), changing the state

each operator may have a precondition for its application

a goal: the condition that should be satisfied in the final state

The objective is to find a plan:

 a finite sequence of operators applicable to the initial state, such that the obtained final state satisfies the given goal Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Constructions as planning problems

- states \Leftrightarrow sets of constructed objects (points, lines, angles,...)
- operators ⇔ construction steps
- the goal: the triangle vertices A, B and C are in the final state

Model Description

Model Description

Encoding objects

We use MiniZinc enumeration types:

enum Point = { A, B, C, O, I, G, H, Ma, Mb, Mc, ... }; enum Line = {a, b, c, ma, mb, mc, sa, sb, sc, ha, hb, hc,...}; enum Circle = { kO, kI, kMa, kMb, kMc, kNa, kNb, kNc,...}; enum Angle = { Alpha, Beta, Gamma,...};

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Important!

Only the objects listed as enumerators can be constructed.

-Model Description

Model Description

Encoding relations

We use MiniZinc model parameters to statically encode the following geometric knowledge:

- incidence relations (points belonging to lines and circles)
- relations between lines (parallel and perpendicular lines)
- circles information (circle centers, diameters and tangents)
- vector ratios, angles information, harmonic conjugates, loci of points . . .

MiniZinc data structures used

Arrays of sets, multidimensional arrays, arrays of tuples...

└─ Model Description

Model Description

Encoding the states (for a fixed plan length n)

The states S_0, \ldots, S_n are encoded using the arrays of set variables:

- known_points[i]
- known_lines[i]
- known_angles[i]
- known_circles[i]

representing the sets of points (lines, angles, circles) belonging to the *i*th state (i.e. constructed up to the *i*th step), for each $i \in \{0, 1, ..., n\}$.

└─ Model Description

Model Description

Encoding the plan

To encode the plan, for each step, we must specify the following:

- the type of operator (i.e. construction) used in this step
 - constructing the line through two given points
 - constructing the point that is the intersection of two given lines
 - constructing the circle centered in one given point and containing another given point, ...
- the objects used in the construction step (used for the construction or being constructed)
 - for instance, if we construct the line through two given points, we must fix:
 - which two points are used
 - which line is being constructed (the one passing through these points)

-Model Description

Model Description

Encoding the plan (2)

We use the enumeration type:

(日)

to enumerate all supported types of construction steps.

■ The array of variables construct[i] denotes the type of construction applied in *i*th step (i ∈ {1, 2, ..., n})

Model Description

Model Description

Encoding the plan (3)

We define the arrays of variables:

points[i][j], lines[i][j], circles[i][j], angles[i][j] denoting the objects used in ith step.

- for instance, in the LineThrough construction:
 - points[i][1] and points[i][2] denote the used points

lines[i][1] denotes the constructed line

Model Description

Model Description

Encoding the state transitions

Connecting the state variables in successive states:

```
constraint forall(i in 1..n)
(
   construct[i] = LineIntersect ->
       % Precondition
       (lines[i,1] in known_lines[i-1] /\
        lines[i,2] in known_lines[i-1] /\
        lines[i,1] != lines[i,2] / 
        not (lines[i,1] in parallel_lines[lines[i,2]]) /\
        lines[i,1] in inc_lines[points[i,1]] /\
        lines[i,2] in inc_lines[points[i,1]] /\
        not (points[i,1] in known_points[i-1]) /\
       % Effects
        known_points[i] = known_points[i-1] union { points[i,1] } /\
        known_lines[i] = known_lines[i-1] /\
        known_circles[i] = known_circles[i-1] /\
        known_angles[i] = known_angles[i - 1]
);
```

Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Encoding the goal

We require that the triangle vertices are constructed in the final state:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

{ A, B, C } subset known_points[n];

Overview

- 2 Constraint Solving
- 3 Model Description

4 Evaluation



Evaluation

Evaluation setups

To construct a plan of a minimal length, we try three different setups:

- linear setup: successively solve CSPs for plans of length n = 1, 2, 3, ..., maxLength, until a satisfiable CSP is encountered
- minimization setup: let n be a variable in domain {1,..., maxLength} and solve the corresponding COP that minimizes n
- incremental setup: successively solve COPs (minimizing n) for incremental domain ranges for n (with step k)
 - $n \in \{1, ..., k\}, \{k + 1, ..., 2k\}, \{2k + 1, ..., 3k\}, ..., < maxLength$

Evaluation

Comparison to ArgoTriCS

 $ArgoTriCS^2$ – a state-of-the-art dedicated triangle construction solver (developed in Prolog).

²Vesna Marinković. ArgoTriCS – automated triangle construction solver. Journal of Experimental & Theoretical Artificial Intelligence. <u>2</u>017. = → (=) → ()

Evaluation

Setup	# solved	Avg. time	Median time	Avg. time on solved	Avg. length
linear	63	97.9	22.0	58.5	6.3
minimization	63	43.8	10.8	29.7	6.3
incremental $(k = 3)$	63	66.1	12.0	39.9	6.3
ArgoTriCS	65	54.5	21.6	54.4	7.5

Overall results on 74 Wernick's problems for different setups, compared to ArgoTriCS. Times are given in seconds

Conclusions

- 2 Constraint Solving
- 3 Model Description

4 Evaluation

Conclusions

Conclusions

Advantages of our approach

Comparable to state-of-the-art tools

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

- Much less effort to implement
- Finds plans of minimal lengths
- Easy to extend

Conclusions

Thank you for your attention!

Questions?